A234312 Number of tilings of a 5 X n rectangle using n pentominoes of shapes L, X.
1, 0, 2, 0, 4, 2, 8, 8, 16, 24, 36, 64, 88, 160, 224, 392, 576, 960, 1472, 2368, 3728, 5888, 9376, 14720, 23488, 36896, 58752, 92544, 146944, 232064, 367680, 581632, 920448, 1457152, 2305024, 3649664, 5773312, 9140224, 14460928, 22890496, 36221184, 57327616
Offset: 0
Keywords
Examples
a(4) = 4: ._______. ._______. ._______. ._______. |_. |_. | | ._| ._| |_. | ._| | ._|_. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |_| |_| |_| |_| | | |_|_| | |_| | |_| |___|___| |___|___| |___|___| |___|___|. a(5) = 2: ._________. ._________. | | ._____| |_____. | | | |_| |_. | | ._| |_| | | |_. ._| | | |_. ._| | |___|_| | | | | |_|___| |_______|_| |_|_______|.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,0,2)
Programs
-
Maple
a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>, <0|0|0|0|1>, <2|0|0|2|0>>^n)[5, 5]: seq(a(n), n=0..50);
-
Mathematica
LinearRecurrence[{0, 2, 0, 0, 2}, {1, 0, 2, 0, 4}, 50] (* Jean-François Alcover, May 28 2019 *)
Formula
G.f.: -1/(2*x^5+2*x^2-1).
a(n) = 2*(a(n-2)+a(n-5)) for n>4, a(1)=a(3)=0, a(0)=1, a(2)=2, a(4)=4.