A234319 Smallest sum of n-th powers of k+1 consecutive positive integers that equals the sum of n-th powers of the next k consecutive integers, or -n if none.
0, 3, 25, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54
Offset: 0
Examples
m^0 + (m+1)^0 + ... + (m+k)^0 = k+1 > k = (m+k+1)^0 + (m+k+2)^0 + ... + (m+2*k)^0 for m > 0, so a(0) = -0 = 0. 1^1 + 2^1 = 3 = 3^1 is minimal for n = 1, so a(1) = 3. 3^2 + 4^2 = 25 = 5^2 is minimal for n = 2, so a(2) = 25.
References
- Edouard Collignon, Note sur la résolution en entiers de m^2 + (m-r)^2 + ... + (m-kr)^2 = (m+r)^2 + ... + (m+kr)^2, Sphinx-Oedipe, 1 (1906-1907), 129-133.
Links
- L. E. Dickson, History of the Theory of Numbers, II, p. 564.
- Georges Dostor, Question sur les nombres, Archiv der Mathematik und Physik, 64 (1879), 350-352.
- Simon Felten and Stefan Müller-Stach, A diophantine equation for sums of consecutive like powers, arXiv:1312.5943 [math.NT], 2013-2015; Elem. Math., 70 (2015), 117-124. doi: 10.4171/EM/284
- Greg Frederickson, Casting Light on Cube Dissections, Math. Mag., 82 (2009), 323-331.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
CoefficientList[Series[x*(27*x^3 - 50*x^2 + 19*x + 3)/(x - 1)^2, {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 21 2014 *)
-
PARI
Vec(x*(27*x^3-50*x^2+19*x+3)/(x-1)^2 + O(x^100)) \\ Colin Barker, Apr 23 2014
Comments