A234350 Triangle T(n, k) = Number of non-equivalent (mod D_3) ways to arrange k indistinguishable points on a triangular grid of side n so that no three points are collinear. Triangle read by rows.
1, 1, 1, 1, 2, 4, 5, 2, 3, 10, 22, 24, 8, 1, 4, 22, 77, 153, 140, 47, 2, 5, 41, 217, 713, 1290, 1112, 322, 15, 7, 72, 530, 2557, 7374, 11743, 8783, 2412, 143, 1, 8, 116, 1149, 7661, 32477, 82988, 116154, 77690, 19621, 1220, 5, 10, 180, 2288, 20055, 116420, 433372
Offset: 1
Examples
Triangle begins 1; 1, 1, 1; 2, 4, 5, 2; 3, 10, 22, 24, 8, 1; 4, 22, 77, 153, 140, 47, 2; 5, 41, 217, 713, 1290, 1112, 322, 15; 7, 72, 530, 2557, 7374, 11743, 8783, 2412, 143, 1; 8, 116, 1149, 7661, 32477, 82988, 116154, 77690, 19621, 1220, 5; ... There are e.g. T(8, 11) = 5 non-equivalent ways to arrange 11 indistinguishable points (X) on a triangular grid of side 8 so that no point triple is collinear. As examples of the 5 solutions the 2 symmetrical ones are shown. . . . . . . . X . . X . X . . X X . . X X . . . X . X . X . . . X X . . X . . . . X . X . . . X . . . X . X . . . . X . . X . . . . X . . X . .
Links
- Heinrich Ludwig, Table of n, a(n) for n = 1..152
Comments