A234387 a(n) = n-th smallest prime congruent to 1 modulo prime(n).
3, 13, 41, 113, 331, 443, 613, 1103, 1013, 1741, 2543, 3257, 3691, 4129, 4889, 6997, 6491, 8053, 8443, 12071, 11681, 12799, 15439, 18869, 20759, 21211, 20807, 27179, 33791, 28703, 37339, 39301, 37813, 53377, 51853, 54059, 62801, 60637, 74149, 72661, 77687, 62989, 81749, 79903, 79589, 109849, 102547
Offset: 1
Keywords
Examples
a(3) = 41 because prime(3) = 5 and primes == 1 mod 5 are 11, 31, 41; a(4) = 113 because prime(4) = 7 and primes == 1 mod 7 are 29, 43, 71, 113.
Links
- Zak Seidov and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Seidov)
Programs
-
Mathematica
Reap[Sow[3];Do[c=0;q=Prime[n];p=1;While[c
-
PARI
a(n)=if(n<2,return(3)); my(p=prime(n),q=2*p+1); while(n, if(isprime(q), n--); q+= 2*p); q-2*p \\ Charles R Greathouse IV, Dec 26 2013