A234463 Binomial(8*n+4,n)/(2*n+1).
1, 4, 38, 468, 6545, 98728, 1566040, 25747128, 434824104, 7498246100, 131477423220, 2337053822012, 42016842044268, 762702138530080, 13959382918289880, 257323577200329904, 4773171937236245400, 89028543731246186400, 1668706597425638149302
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Programs
-
Magma
[Binomial(8*n+4, n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
-
Mathematica
Table[Binomial[8 n + 4, n]/(2 n + 1), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
-
PARI
a(n) = binomial(8*n+4,n)/(2*n+1);
-
PARI
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^2)^4+x*O(x^n)); polcoeff(B, n)}
Formula
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=8, r=4.
Comments