cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234505 a(n) = 2*binomial(9*n+2,n)/(9*n+2).

Original entry on oeis.org

1, 2, 19, 252, 3885, 65274, 1159587, 21421248, 407337153, 7920326700, 156753610013, 3147328992080, 63951322669065, 1312575792628356, 27172514322677625, 566707337222428800, 11896007334177739113, 251142622845893276190, 5328891499524964282170
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=2.

Crossrefs

Programs

  • Magma
    [2*Binomial(9*n+2, n)/(9*n+2): n in [0..30]];
  • Mathematica
    Table[2 Binomial[9 n + 2, n]/(9 n + 2), {n, 0, 30}]
  • PARI
    a(n) = 2*binomial(9*n+2,n)/(9*n+2);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/2))^2+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=2.
a(n) = 2*binomial(9n+1,n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]