A234506 a(n) = binomial(9*n+3, n)/(3*n+1).
1, 3, 30, 406, 6327, 107019, 1909908, 35399520, 674842149, 13147742322, 260626484118, 5239783981320, 106585537781775, 2189670831627678, 45366284782209600, 946815917066740800, 19887218367823853937, 420076689292591271325, 8917736795123409615060, 190161017612160607167948, 4071301730663135449185705
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Programs
-
Magma
[Binomial(9*n+3, n)/(3*n+1): n in [0..30]];
-
Mathematica
Table[Binomial[9n+3, n]/(3n+1), {n, 0, 30}]
-
PARI
a(n) = binomial(9*n+3,n)/(3*n+1);
-
PARI
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^3)^3+x*O(x^n)); polcoeff(B, n)}
-
Sage
[binomial(9*n+3, n)/(3*n+1) for n in (0..30)] # G. C. Greubel, Feb 09 2021
Formula
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=3.
Comments