A234507 4*binomial(9*n+4,n)/(9*n+4).
1, 4, 42, 580, 9139, 155664, 2791404, 51919296, 992414925, 19375620264, 384734333698, 7745767624560, 157746595917027, 3243956787596560, 67267249849483200, 1404952651131292800, 29529506061314207361, 624113938377564174540, 13256095235994257535900, 282803564653982441429256, 6057302574889055180495805
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Programs
-
Magma
[1*Binomial(9*n+1, n)/(9*n+1): n in [0..30]];
-
Mathematica
Table[4 Binomial[9 n + 4, n]/(9 n + 4), {n, 0, 30}]
-
PARI
a(n) = 4*binomial(9*n+4,n)/(9*n+4);
-
PARI
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/1))^1+x*O(x^n)); polcoeff(B, n)}
Formula
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=4.
Comments