cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234509 2*binomial(9*n+6,n)/(3*n+2).

Original entry on oeis.org

1, 6, 69, 992, 15990, 276360, 5006386, 93817152, 1803606255, 35373572460, 704995403541, 14236901646240, 290687378847684, 5990903682047592, 124463414269524000, 2603845580096662656, 54807372993836345589, 1159856934027109448130, 24663454505518980363102, 526708243449729452311200, 11291926596343014148087470
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=6.

Crossrefs

Programs

  • Magma
    [2*Binomial(9*n+6, n)/(3*n+2): n in [0..30]];
  • Mathematica
    Table[6 Binomial[9 n + 6, n]/(9 n + 6), {n, 0, 30}]
  • PARI
    a(n) = 2*binomial(9*n+6,n)/(3*n+2);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/2))^6+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=6.