cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234511 a(n) is the smallest prime(i) such that (prime(i) - prime(j))/(i - j) = prime(n) with i > j.

Original entry on oeis.org

5, 11, 29, 97, 641, 1373, 2591, 4327, 8009, 19661, 36451, 134581, 38543, 172969, 212777, 268403, 1784171, 860239, 1562053, 6085103, 6958813, 3422971, 5103029, 14723567, 47973451, 38394329, 36271783, 75837497, 59160181, 47326919, 111660697, 369706811, 323627951
Offset: 1

Views

Author

Robin Garcia, Dec 27 2013

Keywords

Comments

(i - j) = 2 for all the calculated terms, with the exception of a(1) where (i - j) = 1 and a(6) where (i - j) = 4.

Examples

			a(3) = 29 is the smallest prime (and 10th prime) such that there is a smaller 8th prime: 19 and (29 - 19) / (10 - 8) = 5 is the third prime.
		

Programs

  • Mathematica
    a[1]=5; a[n_] := Catch[Block[{r = Prime@n, i=2, j, p}, While[True, p = Prime[++i]; j = Mod[i, 2]; While[(j += 2) < i, If[p - Prime@j == r*(i-j), Throw@p]]]]] (* Giovanni Resta, Dec 28 2013 *)
  • PARI
    n=16;c=25000;for(b=2,c,forstep(a=b+2,c,2,d=prime(a)-prime(b);e=(a-b);if(d/e==d\e&d/e==prime(n),print([a,b,prime(a),prime(b),d,e,d/e])))) \\ finds a(16) and in general a(n).
    
  • PARI
    okp(n, p) = {i = primepi(p); forprime (q = 2, p-1, j = primepi(q); if ((p-q)/(i-j) == prime(n), return(1)););}
    a(n) = {p = 2; while (! okp(n, p), p = nextprime(p+1)); p;} \\ Michel Marcus, Dec 28 2013

Extensions

a(17)-a(25) from Giovanni Resta, Dec 28 2013
a(26)-a(33) from Donovan Johnson, Jan 01 2014