A234528 Binomial(10*n+5,n)/(2*n+1).
1, 5, 60, 935, 16555, 316251, 6353760, 132321990, 2830853610, 61841702065, 1373736123760, 30935736733230, 704631080073635, 16204866668942000, 375762274309378440, 8775795659568727020, 206241872189050376550, 4873761343609509542490
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Crossrefs
Programs
-
Magma
[Binomial(10*n+5, n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
-
Mathematica
Table[Binomial[10 n + 5, n]/(2 n + 1), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
-
PARI
a(n) = binomial(10*n+5,n)/(2*n+1);
-
PARI
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^2)^5+x*O(x^n)); polcoeff(B, n)}
Formula
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=5.
Comments