A234541 Least k such that floor(n/k) + (n mod k) is a prime, or 0 if no such k exists.
0, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 3, 8, 1, 6, 1, 4, 2, 2, 1, 8, 2, 2, 5, 4, 1, 6, 1, 6, 2, 2, 3, 12, 1, 2, 3, 8, 1, 6, 1, 4, 2, 2, 1, 16, 3, 10, 3, 4, 1, 18, 3, 6, 2, 2, 1, 8, 1, 2, 6, 18, 3, 6, 1, 4, 3, 4, 1, 14, 1, 2, 9, 4, 5, 6, 1, 16, 2, 2, 1, 12, 2, 2
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Python
primes = [2, 3] primFlg = [0]*100000 primFlg[2] = primFlg[3] = 1 def appPrime(k): for p in primes: if k%p==0: return if p*p > k: break primes.append(k) primFlg[k] = 1 for n in range(5, 100000, 6): appPrime(n) appPrime(n+2) for n in range(1, 100000): a = 0 for k in range(1, n): c = n//k + n%k if primFlg[c]: # if c in primes: a = k break print(str(a), end=', ')
-
Scheme
;; MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library and function A234575bi as defined in A234575 (require 'factor) ;; For predicate prime? from SLIB-library. (define (A234541 n) (let loop ((k 1)) (cond ((prime? (A234575bi n k)) k) ((> k n) 0) (else (loop (+ 1 k)))))) ;; Antti Karttunen, Dec 29 2013
Comments