cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A234530 Primes p with q(p) + 1 also prime, where q(.) is the strict partition function (A000009).

Original entry on oeis.org

2, 3, 11, 13, 29, 37, 47, 71, 79, 89, 103, 127, 131, 179, 181, 197, 233, 271, 331, 379, 499, 677, 691, 757, 887, 911, 1019, 1063, 1123, 1279, 1429, 1531, 1559, 1637, 2251, 2719, 3571, 4007, 4201, 4211, 4297, 4447, 4651, 4967, 5953, 6131, 7937, 8233, 8599, 8819, 9013, 11003, 11093, 11813, 12251, 12889, 12953, 13487, 13687, 15259
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 27 2013

Keywords

Comments

By the conjecture in A234514, this sequence should have infinitely many terms.
It seems that a(n+1) < a(n) + a(n-1) for all n > 4.
See A234366 for primes of the form q(p) + 1 with p prime.
See also A234644 for a similar sequence.

Examples

			a(1) = 2 since 2 and q(2) + 1 = 2 are both prime.
a(2) = 3 since 3 and q(3) + 1 = 3 are both prime.
a(3) = 11 since 11 and q(11) + 1 = 13 are both prime.
		

Crossrefs

Programs

  • Mathematica
    n=0;Do[If[PrimeQ[PartitionsQ[Prime[k]]+1],n=n+1;Print[n," ",Prime[k]]],{k,1,10^5}]
    Select[Prime[Range[2000]],PrimeQ[PartitionsQ[#]+1]&] (* Harvey P. Dale, Apr 23 2017 *)

A234569 Primes p with P(p-1) also prime, where P(.) is the partition function (A000041).

Original entry on oeis.org

3, 5, 7, 37, 367, 499, 547, 659, 1087, 1297, 1579, 2137, 2503, 3169, 3343, 4457, 4663, 5003, 7459, 9293, 16249, 23203, 34667, 39971, 41381, 56383, 61751, 62987, 72661, 77213, 79697, 98893, 101771, 127081, 136193, 188843, 193811, 259627, 267187, 282913, 315467, 320563, 345923, 354833, 459029, 482837, 496477, 548039, 641419, 647189
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 28 2013

Keywords

Comments

By the conjecture in A234567, this sequence should have infinitely many terms. It seems that a(n+1) < a(n) + a(n-1) for all n > 5.
The b-file lists all terms not exceeding the 500000th prime 7368787. Note that P(a(113)-1) is a prime having 2999 decimal digits.
See also A234572 for primes of the form P(p-1) with p prime.

Examples

			a(1) = 3 since P(2-1) = 1 is not prime, but P(3-1) = 2 is prime.
a(2) = 5 since P(5-1) = 5 is prime.
a(3) = 7 since P(7-1) = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    n=0;Do[If[PrimeQ[PartitionsP[Prime[k]-1]],n=n+1;Print[n," ",Prime[k]]],{k,1,10^6}]

A234615 Number of ways to write n = k + m with k > 0 and m > 0 such that p = prime(k) + phi(m) and q(p) - 1 are both prime, where phi(.) is Euler's totient function and q(.) is the strict partition function (A000009).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 2, 2, 4, 3, 5, 4, 2, 6, 6, 6, 5, 4, 5, 6, 4, 6, 5, 5, 2, 4, 5, 6, 5, 7, 4, 6, 6, 8, 3, 3, 6, 7, 7, 4, 4, 4, 4, 7, 7, 3, 3, 4, 4, 6, 5, 4, 5, 5, 7, 1, 3, 4, 7, 5, 5, 6, 3, 7, 11, 5, 4, 5, 4, 7, 6, 4, 2, 7, 9, 7, 5, 5, 6, 5, 10, 7, 4, 3, 4, 6, 3, 4, 9, 5, 3, 5, 6, 5, 3, 6, 2, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 28 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 7.
(ii) Any integer n > 7 not equal to 15 can be written as k + m with k > 0 and m > 0 such that p = prime(k) + phi(m) and q(p) + 1 are both prime.
(iii) Any integer n > 83 can be written as k + m with k > 0 and m > 0 such that prime(k) + phi(m)/2 is a square. Also, each integer n > 45 can be written as k + m with k > 0 and m > 0 such that prime(k) + phi(m)/2 is a triangular number.
Clearly, part (i) of this conjecture implies that there are infinitely many primes p with q(p) - 1 also prime (cf. A234644).

Examples

			a(6) = 1 since 6 = 2 + 4 with prime(2) + phi(4) = 5 and q(5) - 1 = 2 both prime.
a(58) = 1 since 58 = 12 + 46 with prime(12) + phi(46) = 59 and q(59) - 1 = 9791 both prime.
a(526) = 1 since 526 = 389 + 137 with prime(389) + phi(137) = 2819 and q(2819) - 1 = 326033386646595458662191828888146112979 both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=Prime[k]+EulerPhi[n-k]
    q[n_,k_]:=PrimeQ[f[n,k]]&&PrimeQ[PartitionsQ[f[n,k]]-1]
    a[n_]:=Sum[If[q[n,k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A234644 Primes p with q(p) - 1 also prime, where q(.) is the strict partition function (A000009).

Original entry on oeis.org

5, 11, 13, 17, 19, 23, 41, 43, 53, 59, 79, 103, 151, 191, 269, 277, 283, 373, 419, 521, 571, 577, 607, 829, 859, 1039, 2503, 2657, 2819, 3533, 3671, 4079, 4153, 4243, 4517, 4951, 4987, 5689, 5737, 5783, 7723, 8101, 9137, 9173, 9241, 9539, 11467, 12323, 12697, 15017, 15277, 15427, 15803, 16057, 17959, 18661
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 29 2013

Keywords

Comments

By the conjecture in A234615, this sequence should have infinitely many terms.
See A234647 for primes of the form q(p) - 1 with p prime.
See also A234530 for a similar sequence.

Examples

			a(1) = 5 since neither q(2) - 1 = 0 nor q(3) - 1 = 1 is prime, but q(5) - 1 = 2 is prime.
a(2) = 11 since q(7) - 1 = 4 is composite, but q(11) - 1 = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    q[k_]:=q[k]=PrimeQ[PartitionsQ[Prime[k]]-1]
    n=0;Do[If[q[k],n=n+1;Print[n," ",Prime[k]]],{k,1,10^5}]

A234647 Primes of the form q(p) - 1, where p is a prime and q(.) is the strict partition function (A000009).

Original entry on oeis.org

2, 11, 17, 37, 53, 103, 1259, 1609, 5119, 9791, 70487, 570077, 20792119, 281138047, 23515017983, 35692320959, 48626519093, 3626048321047, 27077619952639, 1651411233432319, 10743948315198451, 13378670620050079, 39413984631175423, 58553713102334907283, 145464242180631569963, 25408177717067357968543, 1374387931601409538722802926765483199, 20557774525717988142856527912112710143, 326033386646595458662191828888146112979, 27403889354101748193301659902924397784656229
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 29 2013

Keywords

Comments

Though the primes in this sequence are very rare, by the conjecture in A234615 there should be infinitely many such primes.
See A234644 for a list of known primes p with q(p) - 1 prime.

Crossrefs

Programs

  • Maple
    a(1) = 2 since 2 = q(5) - 1 with 2 and 5 both prime.
  • Mathematica
    p[n_]:=A234615(n)
    Table[PartitionsQ[p[n]]-1,{n,1,30}]

Formula

a(n) = A000009(A234615(n)) - 1.
Showing 1-5 of 5 results.