cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234576 Number of Weyl group elements, not containing s_1 or s_2, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type D and rank n.

Original entry on oeis.org

4, 7, 14, 34, 73, 156, 345, 754, 1640, 3585, 7832, 17091, 37318, 81490, 177913, 388448, 848149, 1851826, 4043232, 8827953, 19274812, 42084287, 91886190, 200622866, 438036729, 956402452, 2088193969, 4559329474, 9954767528, 21735081361, 47456031280
Offset: 4

Views

Author

Erik Insko, Dec 28 2013

Keywords

Examples

			For n = 8, a(8) = 34+14+3*7+4 = 73.
		

Programs

  • Maple
    a:=proc(n::nonnegint)
    if n<=3 then return 0:
    elif n=4 then return 4:
    elif n=5 then return 7:
    elif n=6 then return 14:
    elif n=7 then return 34:
    else return
    a(n-1)+a(n-2)+3*a(n-3)+a(n-4):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1, 1, 3, 1}, {4, 7, 14, 34}, 31] (* Jean-François Alcover, Nov 26 2017 *)
  • PARI
    Vec(-x^4*(x^3+3*x^2+3*x+4)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 30 2013

Formula

a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x^4*(x^3+3*x^2+3*x+4) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Dec 30 2013