cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Erik Insko

Erik Insko's wiki page.

Erik Insko has authored 3 sequences.

A234598 Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra of so(2n).

Original entry on oeis.org

9, 18, 35, 82, 180, 385, 846, 1853, 4034, 8810, 19249, 42014, 91727, 200298, 437316, 954809, 2084746, 4551801, 9938290, 21699138, 47377577, 103443386, 225856667, 493131922, 1076696324, 2350841633, 5132790390, 11206852917, 24468864530
Offset: 4

Author

Erik Insko, Dec 28 2013

Keywords

Comments

Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra of type D and rank n.

Examples

			For n = 8, a(n) = 107+73 = 180 and a(n) = 3(34) + 2(14) + 6(7) + 2(4) = 180.
		

Crossrefs

Programs

  • Maple
    r:=proc(n::nonnegint)
    if n<=3 then return 0:
    elif n=4 then return 4:
    elif n=5 then return 7:
    elif n=6 then return 14:
    elif n=7 then return 34:
    else return
    r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
    end if;
    end proc:
    a:=proc(n::nonnegint)
    if n<=3 then return 0:
    elif n=4 then return 9:
    elif n=5 then return 18:
    elif n=6 then return 35:
    elif n=5 then return 82:
    else return
    3*r(n-1)+2*r(n-2)+6*r(n-3)+2*r(n-4):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1, 1, 3, 1}, {9, 18, 35, 82}, 30] (* Jean-François Alcover, Dec 06 2017 *)

Formula

a(n) = A234597(n) + A234576(n).
a(n) = 3*A234576(n-1) + 2*A234576(n-2) + 6*A234576(n-3) + 2*A234576(n-4).
G.f.: x^4*(2*x^3 + 8*x^2 + 9*x + 9)/(-x^4 - 3*x^3 - x^2 - x + 1). - Ralf Stephan, Jan 05 2014

Extensions

More terms from Ralf Stephan, Jan 05 2014

A234597 Number of Weyl group elements, not containing an s_1 factor, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type D and rank n.

Original entry on oeis.org

5, 11, 21, 48, 107, 229, 501, 1099, 2394, 5225, 11417, 24923, 54409, 118808, 259403, 566361, 1236597, 2699975, 5895058, 12871185, 28102765, 61359099, 133970477, 292509056, 638659595, 1394439181, 3044596421, 6647523443, 14514097002, 31689848889, 69191112641
Offset: 4

Author

Erik Insko, Dec 28 2013

Keywords

Examples

			For n=6, a(6) = A234576(6) + A234576(5)= 14+7 = 21.
		

Crossrefs

Cf. A234576.

Programs

  • Maple
    r:=proc(n::nonnegint)
    if n<=3 then return 0:
    elif n=4 then return 4:
    elif n=5 then return 7:
    elif n=6 then return 14:
    elif n=7 then return 34:
    else return
    r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
    end if;
    end proc:
    a:=proc(n::nonnegint)
    if n<=3 then return 0:
    elif n=4 then return 5:
    elif n=5 then return 11:
    else return
    r(n)+r(n-1):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1,1,3,1},{5,11,21,48},40] (* Harvey P. Dale, Feb 17 2016 *)
  • PARI
    Vec(-x^4*(x^3+5*x^2+6*x+5)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 30 2013

Formula

a(n) = A234576(n) + A234576(n-1).
a(n) = a(n-1)+a(n-2)+3*a(n-3)+a(n-4). G.f.: -x^4*(x^3+5*x^2+6*x+5) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Dec 30 2013

A234576 Number of Weyl group elements, not containing s_1 or s_2, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type D and rank n.

Original entry on oeis.org

4, 7, 14, 34, 73, 156, 345, 754, 1640, 3585, 7832, 17091, 37318, 81490, 177913, 388448, 848149, 1851826, 4043232, 8827953, 19274812, 42084287, 91886190, 200622866, 438036729, 956402452, 2088193969, 4559329474, 9954767528, 21735081361, 47456031280
Offset: 4

Author

Erik Insko, Dec 28 2013

Keywords

Examples

			For n = 8, a(8) = 34+14+3*7+4 = 73.
		

Programs

  • Maple
    a:=proc(n::nonnegint)
    if n<=3 then return 0:
    elif n=4 then return 4:
    elif n=5 then return 7:
    elif n=6 then return 14:
    elif n=7 then return 34:
    else return
    a(n-1)+a(n-2)+3*a(n-3)+a(n-4):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1, 1, 3, 1}, {4, 7, 14, 34}, 31] (* Jean-François Alcover, Nov 26 2017 *)
  • PARI
    Vec(-x^4*(x^3+3*x^2+3*x+4)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 30 2013

Formula

a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x^4*(x^3+3*x^2+3*x+4) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Dec 30 2013