A234614 Decimal expansion of constant related to the growth of the number of totients.
8, 1, 7, 8, 1, 4, 6, 4, 0, 0, 8, 3, 6, 3, 2, 2, 3, 1, 5, 2, 5, 5, 9, 6, 8, 0, 0, 9, 0, 2, 9, 6, 5, 6, 0, 3, 8, 6, 4, 8, 5, 2, 9, 8, 2, 3, 7, 8, 9, 9, 1, 7, 8, 6, 3, 8, 6, 1, 2, 6, 3, 2, 0, 4, 2, 9, 7, 9, 1, 0, 0, 5, 2, 4, 5, 4, 9, 6, 4, 2, 1, 9, 6, 7, 0, 4, 6
Offset: 0
Examples
0.81781464008363223152559680090296560386485298237899...
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 16.
- Kevin Ford, The distribution of Totients
- Helmut Maier and Carl Pomerance, On the number of distinct values of Euler's phi-function, Acta Arithmetica 49 (1988), pp. 263-275.
Programs
-
Mathematica
digits = 101; F[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*x^k, {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; rho = x /. FindRoot[F[x] == 1, {x, 5/10, 6/10}, WorkingPrecision -> digits + 10]; RealDigits[rho, 10, digits] // First ;RealDigits[-1/2/Log[rho],10,90][[1]] (* after Jean-François Alcover at A246746 *)
Formula
See Maier & Pomerance p. 264.
Equals -1/(2*log(c0)), where c0 is a constant whose decimal expansion is A246746. - Amiram Eldar, Jun 19 2018
Extensions
a(8) corrected and more terms added by Amiram Eldar, Jun 19 2018
Comments