cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234614 Decimal expansion of constant related to the growth of the number of totients.

Original entry on oeis.org

8, 1, 7, 8, 1, 4, 6, 4, 0, 0, 8, 3, 6, 3, 2, 2, 3, 1, 5, 2, 5, 5, 9, 6, 8, 0, 0, 9, 0, 2, 9, 6, 5, 6, 0, 3, 8, 6, 4, 8, 5, 2, 9, 8, 2, 3, 7, 8, 9, 9, 1, 7, 8, 6, 3, 8, 6, 1, 2, 6, 3, 2, 0, 4, 2, 9, 7, 9, 1, 0, 0, 5, 2, 4, 5, 4, 9, 6, 4, 2, 1, 9, 6, 7, 0, 4, 6
Offset: 0

Views

Author

Keywords

Comments

Let f_k(x) = x * exp(k (log log log x)^2)/log x. Maier & Pomerance show that, for any e > 0, f_{c-e}(x) << g(x) << f_{c+e}(x) where g(x) gives the number of totients less than x and c is this constant. Loosely, this means f_c(A007617(n)) is about n.

Examples

			0.81781464008363223152559680090296560386485298237899...
		

Crossrefs

Programs

  • Mathematica
    digits = 101; F[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*x^k, {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; rho = x /. FindRoot[F[x] == 1, {x, 5/10, 6/10}, WorkingPrecision -> digits + 10]; RealDigits[rho, 10, digits] // First ;RealDigits[-1/2/Log[rho],10,90][[1]] (* after Jean-François Alcover at A246746 *)

Formula

See Maier & Pomerance p. 264.
Equals -1/(2*log(c0)), where c0 is a constant whose decimal expansion is A246746. - Amiram Eldar, Jun 19 2018

Extensions

a(8) corrected and more terms added by Amiram Eldar, Jun 19 2018