A234642 Smallest x such that x mod phi(x) = n, or 0 if no such x exists.
1, 3, 10, 9, 20, 25, 30, 15, 40, 21, 50, 35, 60, 33, 98, 39, 80, 65, 90, 51, 100, 45, 70, 95, 120, 69, 338, 63, 196, 161, 110, 87, 160, 93, 130, 75, 180, 217, 182, 99, 200, 185, 170, 123, 140, 117, 190, 215, 240, 141, 250, 235, 676, 329, 230, 159, 392, 153, 322
Offset: 0
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- Carl Pomerance, On the congruences σ(n) ≡ a (mod n) and n ≡ a (mod φ(n)), Acta Arithmetica 26:3 (1974-1975), pp. 265-272.
Programs
-
Mathematica
A234642[n_]:=NestWhile[# + 1 &, 1, Not[Mod[#, EulerPhi[#]] == n] &] (* JungHwan Min, Dec 23 2015 *) A234642[n_]:=Catch[Do[If[Mod[k, EulerPhi[k]] == n, Throw[k]], {k, Infinity}]] (* JungHwan Min, Dec 23 2015 *) xmp[n_]:=Module[{x=1},While[Mod[x,EulerPhi[x]]!=n,x++];x]; Array[xmp,60,0] (* Harvey P. Dale, Jan 04 2016 *)
-
PARI
a(n)=my(k=n);while(k++%eulerphi(k)!=n,);k
Comments