A234643 E.g.f.: Sum_{n>=0} Integral^n (exp(x) + 1)^n dx^n, where integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration.
1, 2, 5, 13, 35, 99, 297, 951, 3265, 12047, 47761, 202975, 921281, 4447327, 22737537, 122639583, 695404929, 4132531679, 25667031937, 166211936735, 1119791799425, 7833568488415, 56802921911681, 426267651506655, 3305731721387649, 26457699508131807, 218276886237532033
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 13*x^3/3! + 35*x^4/4! + 99*x^5/5! +... where the e.g.f. may be expressed as a series involving iterated integration: A(x) = 1 + Integral (exp(x)+1) dx + Integral^2 (exp(x)+1)^2 dx^2 + Integral^3 (exp(x)+1)^3 dx^3 + Integral^4 (exp(x)+1)^4 dx^4 +...
Crossrefs
Cf. A105795.
Programs
-
PARI
{a(n)=sum(k=0,n, sum(j=0,k,binomial(k,j)*j^(n-k)))} for(n=0,30,print1(a(n),", "))
-
PARI
{INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G} {a(n)=local(A=1+x);A=1+sum(k=1,n,INTEGRATE(k,(exp(x+x*O(x^n))+1)^k ));n!*polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Formula
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(k,j) * j^(n-k).