cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234643 E.g.f.: Sum_{n>=0} Integral^n (exp(x) + 1)^n dx^n, where integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration.

Original entry on oeis.org

1, 2, 5, 13, 35, 99, 297, 951, 3265, 12047, 47761, 202975, 921281, 4447327, 22737537, 122639583, 695404929, 4132531679, 25667031937, 166211936735, 1119791799425, 7833568488415, 56802921911681, 426267651506655, 3305731721387649, 26457699508131807, 218276886237532033
Offset: 0

Views

Author

Paul D. Hanna, Dec 29 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 13*x^3/3! + 35*x^4/4! + 99*x^5/5! +...
where the e.g.f. may be expressed as a series involving iterated integration:
A(x) = 1 + Integral (exp(x)+1) dx + Integral^2 (exp(x)+1)^2 dx^2 + Integral^3 (exp(x)+1)^3 dx^3 + Integral^4 (exp(x)+1)^4 dx^4 +...
		

Crossrefs

Cf. A105795.

Programs

  • PARI
    {a(n)=sum(k=0,n, sum(j=0,k,binomial(k,j)*j^(n-k)))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
    {a(n)=local(A=1+x);A=1+sum(k=1,n,INTEGRATE(k,(exp(x+x*O(x^n))+1)^k ));n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(k,j) * j^(n-k).