cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234693 Primes of the form n^2 + 1 such that (n - 1)^2 + 1 and (n + 1)^2 + 1 are semiprimes.

Original entry on oeis.org

17, 101, 28901, 324901, 608401, 902501, 2016401, 5664401, 7452901, 14822501, 16974401, 18490001, 34222501, 40449601, 41731601, 46240001, 48580901, 50410001, 52417601, 76038401, 92736901, 103022501, 111936401, 121220101, 124768901, 139948901, 151290001
Offset: 1

Views

Author

Michel Lagneau, Dec 29 2013

Keywords

Comments

The corresponding n are 4, 10, 170, 570, 780, 950, 1420, 2380...
Property: n^2 + 1 = p + q - 1 and for a(n) > 17, a(n) == 1 mod 100.

Examples

			101 = 10^2 + 1 is in the sequence because 9^2 + 1 = 2*41 and 11^2 + 1 = 2*61.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 10^5 do:n1:=n^2+1:n2:=(n+1)^2+1:n3:=(n+2)^2+1: if type(n2,prime)=true and bigomega(n1)=2 and bigomega(n3)=2 then printf(`%d, `,n2):else fi:od:
  • PARI
    forstep(n=4,1e5,2,if(isprime(n^2+1) && isprime(n^2/2-n+1) && isprime(n^2/2+n+1), print1(n^2+1", "))) \\ Charles R Greathouse IV, Dec 29 2013