A234739 Largest prime divisor of all composite numbers of the form k^2+1 between two consecutive primes of the same form.
5, 13, 41, 61, 113, 181, 97, 313, 613, 761, 1301, 89, 2113, 2521, 3121, 3613, 1693, 5101, 1277, 557, 7321, 601, 1613, 8581, 10513, 2161, 4621, 12641, 14281, 15313, 6337, 16381, 20201, 21013, 21841, 24421, 5153, 26681, 11329, 30013, 977, 13313, 34061, 7129
Offset: 1
Keywords
Examples
181 is in the sequence because the composites between the two primes A002496(7)= 16^2+1 = 257 and A002496(8)= 20^2+1=401 are: 17^2+1= 2*5*29; 18^2+1 = 5*5*13; 19^2+1=2*181 and the largest prime divisor is 181, so a(5)=181.
Programs
-
Maple
with(numtheory):T:=array(1..111):k:=0:for n from 2 by 2 to 1000 do: p:=n^2+1:if type(p,prime)=true then k:=k+1:T[k]:=p:else fi:od:for i from 1 to k do:d0:=0:a:=sqrt(T[i]-1):b:=sqrt(T[i+1]-1):for j from a+1 to b-1 do:y:=factorset(j^2+1):n1:=nops(y):d:=y[n1]:if d>d0 then d0:=d:else fi:od: printf(`%d, `,d0):od:
Comments