A234814 Numbers that are divisible by their digital sum but not by their digital root.
195, 209, 247, 266, 285, 375, 392, 407, 465, 476, 481, 518, 555, 592, 605, 629, 644, 645, 715, 735, 736, 782, 803, 825, 880, 915, 935, 1066, 1095, 1148, 1168, 1183, 1185, 1274, 1275, 1365, 1394, 1417, 1455, 1526, 1534, 1545, 1547, 1635, 1651, 1652, 1679, 1725, 1744, 1815, 1853, 1886, 1898, 1904, 1905
Offset: 1
Examples
195 is a term as it is divisible by its digital sum i.e. 15 but not by its digital root i.e. 6.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Harshad number.
Programs
-
Haskell
a234814 n = a234814_list !! (n-1) a234814_list = filter (\x -> x `mod` a007953 x == 0 && x `mod` a010888 x /= 0) [1..] -- Reinhard Zumkeller, Mar 04 2014
-
Mathematica
Select[Range@1905, Mod[#, 1 + Mod[#-1, 9]] > 0 && Mod[#, Plus@@ IntegerDigits@ #] == 0 &] (* Giovanni Resta, Jan 03 2014 *)
Comments