A234855 E.g.f. satisfies: A(x) = Sum_{n>=0} ( Integral A(x)^n dx )^n.
1, 1, 3, 21, 241, 3951, 85499, 2325205, 76860673, 3014656183, 137784836475, 7235668490589, 431692029451009, 28991550501283359, 2174713803535479419, 181001542259074421413, 16618721538838243841185, 1674634828088234390862727, 184352162064651888588105243
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 21*x^3/3! + 241*x^4/4! + 3951*x^5/5! +... To illustrate how the terms are generated, form a table of coefficients of x^k/k!, k>=0, in (Integral A(x)^n dx)^n for n>=0 like so: n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...]; n=1: [0, 1, 1, 3, 21, 241, 3951, 85499, 2325205, 76860673, ...]; n=2: [0, 0, 2, 12, 88, 920, 13328, 254744, 6161568, 182632584, ...]; n=3: [0, 0, 0, 6, 108, 1710, 29700, 600642, 14344092, 403670790, ...]; n=4: [0, 0, 0, 0, 24, 960, 28800, 826560, 24665088, 793449216, ...]; n=5: [0, 0, 0, 0, 0, 120, 9000, 462000, 20958000, 922005000, ...]; n=6: [0, 0, 0, 0, 0, 0, 720, 90720, 7378560, 504040320, ...]; n=7: [0, 0, 0, 0, 0, 0, 0, 5040, 987840, 120022560, ...]; n=8: [0, 0, 0, 0, 0, 0, 0, 0, 40320, 11612160, ...]; n=9: [0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, ...]; ... then the column sums form the terms of this sequence.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..100
Programs
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,30,intformal( (A+x*O(x^n))^k )^k));n!*polcoeff(A,n)} for(n=0,20,print1(a(n),", "))
Formula
E.g.f. satisfies: A'(x) = Sum_{n>=1} n * A(x)^n * ( Integral A(x)^n dx )^(n-1).