cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234871 a(n) = 5*binomial(11*n+5,n)/(11*n+5).

Original entry on oeis.org

1, 5, 65, 1110, 21620, 455126, 10085845, 231814440, 5475346305, 132090011900, 3240886705386, 80621405042750, 2028732009726240, 51548408940061460, 1320738410528418175, 34083616545621832176, 885134579074202142075, 23114512490211287029665
Offset: 0

Views

Author

Tim Fulford, Jan 01 2014

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=5.

Crossrefs

Programs

  • Magma
    [5*Binomial(11*n+5,n)/(11*n+5): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014
  • Mathematica
    Table[5 Binomial[11 n + 5, n]/(11 n + 5), {n, 0, 40}] (* Vincenzo Librandi, Jan 01 2014 *)
  • PARI
    a(n) = 5*binomial(11*n+5,n)/(11*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/5))^5+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=5.