A234871 a(n) = 5*binomial(11*n+5,n)/(11*n+5).
1, 5, 65, 1110, 21620, 455126, 10085845, 231814440, 5475346305, 132090011900, 3240886705386, 80621405042750, 2028732009726240, 51548408940061460, 1320738410528418175, 34083616545621832176, 885134579074202142075, 23114512490211287029665
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Programs
-
Magma
[5*Binomial(11*n+5,n)/(11*n+5): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014
-
Mathematica
Table[5 Binomial[11 n + 5, n]/(11 n + 5), {n, 0, 40}] (* Vincenzo Librandi, Jan 01 2014 *)
-
PARI
a(n) = 5*binomial(11*n+5,n)/(11*n+5);
-
PARI
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/5))^5+x*O(x^n)); polcoeff(B, n)}
Formula
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=5.
Comments