A234931 Number of tilings of a 5 X n rectangle using n pentominoes of shapes F, U, N.
1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 8, 0, 16, 0, 40, 0, 64, 16, 200, 96, 504, 464, 1528, 1664, 4376, 5616, 12792, 18192, 38264, 58384, 115832, 186368, 355808, 589344, 1095408, 1853664, 3383656, 5802016, 10470376, 18125280, 32461312, 56552736, 100782696, 176318464
Offset: 0
Keywords
Examples
a(4) = 2: ._______. ._______. | | ._. | | ._. | | | |_| |_| |_| |_| | |_. |_. | | ._| ._| | |_| | | | | |_| | |_____|_| |_|_____|.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
Formula
G.f.: (4*x^20 +4*x^18 +8*x^16 -3*x^14 +4*x^13 -5*x^12 -2*x^11 +3*x^10 -2*x^9 +6*x^8 -2*x^7 +2*x^6 -2*x^5 -x^4 +2*x -1) / (-8*x^22 -28*x^20 -6*x^18 +8*x^17 +26*x^16 +4*x^15 +7*x^14 -8*x^13 -9*x^12 -14*x^11 +7*x^10 +2*x^9 +8*x^8 -2*x^7 +2*x^6 -6*x^5 +x^4 +2*x -1).