A234955 Trisection of A107926: The least number k such that there are primes p and q with p - q = 6*n+2, p + q = k, and p the least such prime >= k/2.
8, 54, 108, 234, 228, 414, 516, 1182, 612, 1038, 1776, 1074, 3312, 1398, 1728, 2706, 2844, 4902, 1152, 3870, 2724, 4974, 2328, 6222, 5040, 13194, 10236, 5838, 8952, 9642, 9816, 12906, 21900, 11958, 14712, 6294, 15984, 9498, 31752, 31602, 6096, 37854, 41208, 6114
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..867
Programs
-
Mathematica
f[n_] := Block[{p = n/2}, While[ !PrimeQ[n - p], p = NextPrime@ p]; p - n/2]; t = Table[0, {10000}]; k = 4; While[k < 12475000001, If[ t[[f@ k]] == 0, t[[f@ k]] = k; Print[{f@ k, k}]]; k += 2]; Table[ t[[n]], {n, 2, 5000, 3}]
Formula
a(n) = A107926(3n-2).
Comments