cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234955 Trisection of A107926: The least number k such that there are primes p and q with p - q = 6*n+2, p + q = k, and p the least such prime >= k/2.

Original entry on oeis.org

8, 54, 108, 234, 228, 414, 516, 1182, 612, 1038, 1776, 1074, 3312, 1398, 1728, 2706, 2844, 4902, 1152, 3870, 2724, 4974, 2328, 6222, 5040, 13194, 10236, 5838, 8952, 9642, 9816, 12906, 21900, 11958, 14712, 6294, 15984, 9498, 31752, 31602, 6096, 37854, 41208, 6114
Offset: 1

Views

Author

Robert G. Wilson v, Jan 01 2014

Keywords

Comments

All terms found to date are congruent to 0 (mod 6), except for a(1).
Record values: 8, 54, 108, 228, 414, 516, 612, 1038, 1074, 1152, 2328, 5040, 5838, 6096, 6114, 22194, 37764, 37902, 99432, 136116, 176856, 318144, 410712, 1079952, 1436448, 2549346, 3278118, 7012944, 8268534, 11283126, 11284134, 22614234, 37510062, 41607234, 94089894, 139419954, 144049014, 305966316, 378180246, 490373322, 998189838, 1326486408, 1373334486, 1445744268, 2016602694, 2247482688, 3239350182, 3884888976, 5147119596, 7172019282, …, .

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = n/2}, While[ !PrimeQ[n - p], p = NextPrime@ p]; p - n/2]; t = Table[0, {10000}]; k = 4;  While[k < 12475000001, If[ t[[f@ k]] == 0, t[[f@ k]] = k; Print[{f@ k, k}]]; k += 2]; Table[ t[[n]], {n, 2, 5000, 3}]

Formula

a(n) = A107926(3n-2).