A234970 Deficient numbers whose aliquot sequence is deficient, abundant, deficient, ..., etc.
284, 1210, 1336, 2122, 2362, 2924, 5234, 5564, 6368, 10856, 12458, 13923, 14595, 18416, 34586, 36843, 66992, 71145, 74385, 76084, 80745, 85939, 87633, 88730, 89228, 90153, 91322, 91792, 123152, 124155, 139815, 153176, 156122, 163148, 168730, 171428, 172166
Offset: 1
Keywords
Examples
The aliquot sequence 284->220->284->... has the requested form, so 284 is here. 2122 is here too, since its aliquot sequence is 2122->1064->1336->1184->1210->... .
Programs
-
PARI
isAmicable(n)={my(a=sigma(n)-n); (a<>n) && (sigma(a)-a)==n;} \\ from A063990 isSociableADAD(n)={my(a=sigma(n)-n); if (!a, return (0)); my(b=sigma(a)-a); if(! b, return (0)); my(c=sigma(b)-b); if (!c, return (0)); my(d=sigma(c)-c); if (d != n, return (0)); ((n>a) && (ac) && (c
b) && (b n));} isok(n) = {my(oldn = n); my(newn = sigma(oldn) - oldn); my(dir = sign(newn - oldn)); if (!dir || (dir > 0), return (0)); oldn = newn; while (1, newn = sigma(oldn) - oldn; ndir = sign(newn - oldn); if (!ndir || (ndir == dir), return (0)); if (isAmicable(oldn), return(1)); if (isSociableADAD(oldn), return(1)); oldn = newn; dir = ndir;);}
Comments