cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235032 Numbers which are factored to the same set of primes in Z as to the binary codes of irreducible polynomials in GF(2)[X].

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 19, 22, 24, 26, 28, 31, 32, 37, 38, 41, 44, 47, 48, 52, 56, 59, 61, 62, 64, 67, 73, 74, 76, 82, 88, 94, 96, 97, 103, 104, 109, 111, 112, 118, 122, 123, 124, 128, 131, 134, 137, 146, 148, 152, 157, 164, 167, 176, 188
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

This is a subsequence of the sequence which gives all such n that A001222(n) = A091222(n).

Examples

			2, 3 and 11 are included in this sequence, because they occur in A091206. That is, they are all primes, and encode irreducible polynomials in ring GF(2)[X] via their binary representations: For 2, '10' in binary, corresponds to polynomial x, and for 3, '11' in binary, corresponds to polynomial x+1, and for 11, '1011' in binary, corresponds to polynomial x^3+x+1, which are all irreducible in GF(2)[X].
4 is included in this sequence, because it factors as 2*2, but also because the corresponding GF(2)[X] polynomial x^2 factors as x*x (with the polynomial x encoded by the number 2).
5 is NOT included in this sequence, because, although it is prime, the corresponding polynomial (5 in binary is '101'): x^2 + 1 is not irreducible in GF(2)[X], but factors as (x+1)(x+1), i.e., we have 5 = A048720(3,3).
111 is included, as it is a product of two primes, 3*37, and these primes encode via their binary representations, '11' and '100101', two polynomials irreducible in GF(2)[X]: x+1 and x^5 + x^2 + 1, whose product, x^6 + x^5 + x^3 + x^2 + x + 1, is encoded by 111's binary representation, '1101111'.
		

Crossrefs

Complement: A235033. Intersection of A235034 & A235035. Union of A091206 & A235036. Subsequence of A235045.
A235036 and A235039 give composite and odd composite (after 1) terms occurring in this sequence.
Gives the positions of zeros in A236380, i.e. such n that A234741(n) = A234742(n).
Cf. also A048720.