cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235138 a(n) = Sum_{k=1..n} k^phi(n) (mod n) where phi(n) = A000010(n).

Original entry on oeis.org

0, 1, 2, 2, 4, 1, 6, 4, 6, 3, 10, 2, 12, 5, 7, 8, 16, 3, 18, 6, 11, 9, 22, 4, 20, 11, 18, 10, 28, 29, 30, 16, 19, 15, 23, 6, 36, 17, 23, 12, 40, 1, 42, 18, 21, 21, 46, 8, 42, 15, 31, 22, 52, 9, 39, 20, 35, 27, 58, 58, 60, 29, 33, 32, 47, 5, 66, 30, 43, 11, 70, 12, 72, 35, 35, 34, 59, 7, 78, 24, 54, 39, 82, 2, 63, 41, 55, 36, 88, 87, 71, 42, 59, 45, 71, 16, 96, 35, 57, 30
Offset: 1

Views

Author

Jonathan Sondow and Emmanuel Tsukerman, Jan 03 2014

Keywords

Comments

a(n) = n-1 if and only if n is prime or is a Giuga number A007850.
a(n) = 1 if (and probably only if) n is a primary pseudoperfect number A054377.
a(2^k*p) = 2^(k-1)*p-2^k if p is an odd prime. - Robert Israel, Apr 25 2017

Examples

			a(4) = 30 (mod 4) = 2 since 1^(phi(4)) + 2^(phi(4)) + 3^(phi(4)) + 4^(phi(4))= 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local q; q:= numtheory:-phi(n);
       add(k&^q, k=1..n) mod n
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 25 2017
  • Mathematica
    a[n_] := Mod[Sum[PowerMod[i, EulerPhi@n, n], {i, n}], n]
  • PARI
    a(n)=my(p=eulerphi(n));sum(k=1,n,k^p) \\ Charles R Greathouse IV, Jan 04 2014

Formula

a(n) = A235137(n) (mod n).
Conjecture : a(n) = Sum_{d|n} phi(n/d)*d^phi(n) (mod n). - Ridouane Oudra, Feb 17 2024