A007850
Giuga numbers: composite numbers n such that p divides n/p - 1 for every prime divisor p of n.
Original entry on oeis.org
30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, 14737133470010574, 550843391309130318, 244197000982499715087866346, 554079914617070801288578559178, 1910667181420507984555759916338506
Offset: 1
D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn
From _M. F. Hasler_, Jul 13 2015: (Start)
The prime divisors of 30 are {2, 3, 5}, and 2 divides 30/2-1 = 14, 3 divides 30/3-1 = 9, and 5 divides 30/5-1 = 5.
The prime divisors of 858 are {2, 3, 11, 13} and 858/2-1 = 428 is even, 858/3-1 = 285 is divisible by 3, 858/11-1 = 77 is a multiple of 11, and 858/13-1 = 65 = 13*5.
(End)
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 30, pp 11, Ellipses, Paris 2008.
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT], 2016.
- D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn, Giuga's Conjecture on Primality, Amer. Math. Monthly 103, No. 1, 40-50 (1996).
- J. M. Borwein and E. Wong, A Survey of Results Relating to Giuga's Conjecture on Primality, Vinet, Luc (ed.): Advances in Mathematical Sciences: CRM's 25 Years. Providence, RI: American Mathematical Society. CRM Proc. Lect. Notes. 11, 13-27 (1997).
- William Butske, Lynda M. Jaje, and Daniel R. Mayernik, On the equation Sum_{p | N} 1/p + (1/N)=1, pseudoperfect numbers and perfectly weighted graphs, Math. Comp. 69 (2000), no. 229, 407-420.
- José María Grau and Antonio M. Oller-Marcén, Giuga Numbers and the arithmetic derivative., arXiv:1103.2298 [math.NT], 2011; J. Int. Seq. 15 (2012) 12.4.1
- José María Grau and Antonio M. Oller-Marcén, Generalizing Giuga's conjecture, arXiv:1103.3483 [math.NT], 2011.
- J. M. Grau and A. M. Oller-Marcén, On the congruence sum_{j=1}^{n-1} j^{k(n-1)} == -1 (mod n); k-strong Giuga and k-Carmichael numbers, arXiv preprint arXiv:1311.3522 [math.NT], 2013.
- J. M. Grau, A. M. Oller-Marcén, and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- John Machacek, Egyptian Fractions and Prime Power Divisors, arXiv:1706.01008 [math.NT], 2017.
- Mersenne Forum, Giuga numbers
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867 [math.NT], May 04 2013.
- R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
- J. Sondow and K. MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdős-Moser equation, Amer. Math. Monthly, 124 (2017) 232-240; arXiv:math/1812.06566 [math.NT], 2018.
- J. Sondow and E. Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 4.
- Eric Weisstein's World of Mathematics, Giuga Number.
- Wikipedia, Agoh-Giuga conjecture
- Wikipedia, Giuga number
-
fQ[n_] := AllTrue[First /@ FactorInteger@ n, Divisible[n/# - 1, #] &]; Select[Range@ 100000, CompositeQ@ # && fQ@ # &] (* Michael De Vlieger, Oct 05 2015 *)
-
is(n)=if(isprime(n), return(0)); my(f=factor(n)[,1]); for(i=1,#f, if((n/f[i])%f[i]!=1, return(0))); n>1 \\ Charles R Greathouse IV, Apr 28 2015
-
from itertools import count, islice
from sympy import isprime, primefactors
def A007850_gen(startvalue=2): # generator of terms >= startvalue
return filter(lambda x: not isprime(x) and all((x//p-1) % p == 0 for p in primefactors(x)), count(max(startvalue,2)))
A007850_list = list(islice(A007850_gen(),4)) # Chai Wah Wu, Feb 19 2022
A054377
Primary pseudoperfect numbers: numbers n > 1 such that 1/n + sum 1/p = 1, where the sum is over the primes p | n.
Original entry on oeis.org
2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1
From _Daniel Forgues_, May 24 2013: (Start)
With a(1) = 2, we have 1/2 + 1/2 = (1 + 1)/2 = 1;
with a(2) = 6 = 2 * 3, we have
1/2 + 1/3 + 1/6 = (3 + 2 + 1)/6 = (1*3 + 3)/(2*3) = (1 + 1)/2 = 1;
with a(3) = 42 = 6 * 7, we have
1/2 + 1/3 + 1/7 + 1/42 = (21 + 14 + 6 + 1)/42 =
(3*7 + 2*7 + 7)/(6*7) = (3 + 2 + 1)/6 = 1;
with a(4) = 1806 = 42 * 43, we have
1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = (903 + 602 + 258 + 42 + 1)/1806 =
(21*43 + 14*43 + 6*43 + 43)/(42*43) = (21 + 14 + 6 + 1)/42 = 1;
with a(5) = 47058 (not oblong number), we have
1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/47058 =
(23529 + 15686 + 4278 + 2046 + 1518 + 1)/47058 = 1.
For n = 1 to 8, a(n) has n prime factors:
a(1) = 2
a(2) = 2 * 3
a(3) = 2 * 3 * 7
a(4) = 2 * 3 * 7 * 43
a(5) = 2 * 3 * 11 * 23 * 31
a(6) = 2 * 3 * 11 * 23 * 31 * 47059
a(7) = 2 * 3 * 11 * 17 * 101 * 149 * 3109
a(8) = 2 * 3 * 11 * 23 * 31 * 47059 * 2217342227 * 1729101023519
If a(n)+1 is prime, then a(n)*[a(n)+1] is also primary pseudoperfect. We have the chains: a(1) -> a(2) -> a(3) -> a(4); a(5) -> a(6). (End)
A primary pseudoperfect number (greater than 2) is oblong if and only if it is not the initial member of a chain. - _Daniel Forgues_, May 29 2013
If a(n)-1 is prime, then a(n)*(a(n)-1) is a Giuga number (A007850). This occurs for a(2), a(3), and a(5). See A235139 and the link "The p-adic order . . .", Theorem 8 and Example 1. - _Jonathan Sondow_, Jan 06 2014
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
- W. Butske, L. M. Jaje, and D. R. Mayernik, On the Equation Sum_{p|N} 1/p + 1/N = 1, Pseudoperfect numbers and partially weighted graphs, Math. Comput., 69 (1999), 407-420. [Title corrected by _Jonathan Sondow_, Apr 11 2012]
- J. M. Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^m + 2^m + ... + m^m == n (mod m) with n|m, arXiv:1309.7941 [math.NT], 2013.
- J. M. Grau, A. M. Oller-Marcén, and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- John Machacek, Egyptian Fractions and Prime Power Divisors, arXiv:1706.01008 [math.NT], 2017.
- J. Sondow and K. MacMillan, Reducing the Erdos-Moser equation 1^n + 2^n + . . . + k^n = (k+1)^n modulo k and k^2, Integers 11 (2011), #A34.
- J. Sondow and K. MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdos-Moser equation, Amer. Math. Monthly, 124 (2017) 232-240; arXiv:math/1812.06566 [math.NT], 2018.
- J. Sondow and E. Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 4.
- Eric Weisstein's World of Mathematics, Primary pseudoperfect number.
- Wikipedia, Primary pseudoperfect number.
- OEIS Wiki, Primary pseudoperfect numbers.
Cf.
A005835,
A007850,
A069359,
A168036,
A190272,
A191975,
A203618,
A216825,
A216826,
A230311,
A235137,
A235138,
A235139,
A236433.
-
pQ[n_] := (f = FactorInteger[n]; 1/n + Sum[1/f[[i]][[1]], {i, Length[f]}] == 1)
Select[Range[2, 10^6], pQ[#] &] (* Robert Price, Mar 14 2020 *)
-
isok(n) = if (n > 1, my(f=factor(n)[,1]); 1/n + sum(k=1, #f, 1/f[k]) == 1); \\ Michel Marcus, Oct 05 2017
-
from sympy import primefactors
A054377 = [n for n in range(2,10**5) if sum([n/p for p in primefactors(n)]) +1 == n] # Chai Wah Wu, Aug 20 2014
A235137
a(n) = Sum_{k = 1..n} k^phi(n), where phi(n) = A000010(n).
Original entry on oeis.org
1, 3, 14, 30, 979, 91, 184820, 8772, 978405, 25333, 40851766526, 60710, 36720042483591, 19092295, 5666482312, 9961449608, 76762718946972480009, 105409929, 164309788542828686799730, 70540730666, 15909231318568907, 67403375450475, 1433191209985108404653810959324, 351625763020, 15975648280734359596251725645
Offset: 1
a(4) = 30 since 1^(phi(4)) + 2^(phi(4)) + 3^(phi(4)) + 4^(phi(4))= 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30.
a(5) = 979, since phi(5) = 4 and 1^4 + 2^4 + 3^4 + 4^4 + 5^4 = 1 + 16 + 81 + 256 + 625 = 979.
a(6) = 91, since phi(6) = 2 and 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 1 + 4 + 9 + 16 + 25 + 36 = 91.
- Seiichi Manyama, Table of n, a(n) for n = 1..388
- J. Sondow and K. MacMillan, Reducing the Erdős-Moser equation 1^n + 2^n + ... + k^n = (k+1)^n modulo k and k^2, Integers 11 (2011), #A34.
- J. Sondow and E. Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 4.
- Wikipedia, Giuga number
- Wikipedia, Primary pseudoperfect number
-
a[n_] := Sum[PowerMod[i, EulerPhi@n, n], {i, n}]
-
a(n) = sum(k=1, n , k^eulerphi(n)); \\ Michel Marcus, Oct 21 2015
Showing 1-3 of 3 results.
Comments