cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A236434 Table whose n-th row lists the prime factors of the n-th Giuga number A007850(n).

Original entry on oeis.org

2, 3, 5, 2, 3, 11, 13, 2, 3, 7, 41, 2, 3, 11, 17, 59, 2, 3, 11, 23, 31, 47057, 2, 3, 7, 43, 3041, 4447, 2, 3, 7, 59, 163, 1381, 775807, 2, 3, 7, 71, 103, 67213, 713863, 2, 3, 7, 71, 103, 61559, 29133437, 2, 3, 11, 23, 31, 47137, 28282147, 3892535183, 2, 3, 11, 23, 31, 47059, 2259696349, 110725121051, 2, 3, 7, 43, 1831, 138683, 2861051, 1456230512169437
Offset: 1

Views

Author

Jonathan Sondow, Jan 25 2014

Keywords

Comments

It is unknown whether there are infinitely many Giuga numbers or any odd ones.
See A007850 for other comments, references, links, etc.
For prime factors of primary pseudoperfect numbers, see A236433; of terms in Sylvester's sequence, see A126263.

Examples

			30 = 2 * 3 * 5.
858 = 2 * 3 * 11 * 13.
1722 = 2 * 3 * 7 * 41.
66198 = 2 * 3 * 11 * 17 * 59.
2214408306 = 2 * 3 * 11 * 23 * 31 * 47057.
24423128562 = 2 * 3 * 7 * 43 * 3041 * 4447.
432749205173838 = 2 * 3 * 7 * 59 * 163 * 1381 * 775807.
14737133470010574 = 2 * 3 * 7 * 71 * 103 * 67213 * 713863.
550843391309130318 = 2 * 3 * 7 * 71 * 103 * 61559 * 29133437.
244197000982499715087866346 = 2 * 3 * 11 * 23 * 31 * 47137 * 28282147 * 3892535183.
554079914617070801288578559178 = 2 * 3 * 11 * 23 * 31 * 47059 * 2259696349 * 110725121051.
1910667181420507984555759916338506 = 2 * 3 * 7 * 43 * 1831 * 138683 * 2861051 * 1456230512169437.
Another Giuga number (but possibly not the 13th) is 4200017949707747062038711509670656632404195753751630609228764416142557211582098432545190323474818 = 2 * 3 * 11 * 23 * 31 * 47059 * 2217342227 * 1729101023519 * 8491659218261819498490029296021 * 58254480569119734123541298976556403.
		

Crossrefs

A216823 Prime factors of Giuga numbers A007850 with 8 or fewer prime divisors.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 31, 41, 43, 59, 71, 103, 163, 1381, 1831, 3041, 4447, 47057, 47059, 47137, 61559, 67213, 138683, 713863, 775807, 2861051, 28282147, 29133437, 2259696349, 3892535183, 110725121051, 1456230512169437
Offset: 1

Views

Author

Jonathan Sondow, Sep 17 2012

Keywords

Comments

See A007850 for comments, references, and links.

Examples

			30 = 2*3*5 is a Giuga number, so 2, 3, 5 are members.
		

Crossrefs

A216824 Largest prime factor of the n-th Giuga number A007850(n).

Original entry on oeis.org

5, 13, 41, 59, 47057, 4447, 775807, 713863, 29133437, 3892535183, 110725121051, 1456230512169437
Offset: 1

Views

Author

Jonathan Sondow, Sep 17 2012

Keywords

Comments

See A007850 for comments, references, and links.

Examples

			A007850(1) = 30 = 2*3*5 is the first Giuga number, so a(1) = 5.
		

Crossrefs

A270815 Let M be the n-th Giuga number (see A007850); a(n) = sum of (M/p - 1)/p for primes p dividing M.

Original entry on oeis.org

11, 321, 657, 24699, 824438641, 9331106993, 165242994898683, 5626813041698235, 210318566007979643, 90916134718317480897884289, 206287562744685037912181145873, 729990278282182004516138224533969
Offset: 1

Views

Author

Paolo P. Lava, Mar 23 2016

Keywords

Comments

For the additional Giuga number (not known to be the next term of A007850), 4200017949707747062038711509670656632404195753751630609228764416142557211582098432545190323474818 the corresponding value is 1563694051115215735786664430977202618214176554388873529993304101116913223541171676954379378709457.

Examples

			Prime factors of 30 are 2, 3 and 5: (30/2 - 1)/2 + (30/3 - 1)/3 + (30/5 - 1)/5 = 7 + 3 + 1 = 11.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local n,x; x:=[30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, 14737133470010574, 550843391309130318, 244197000982499715087866346, 554079914617070801288578559178, 1910667181420507984555759916338506];
    for n from 1 to nops(x) do print(add((x[n]/k-1)/k,k=factorset(x[n]))); od; end: P(1);

A234952 Apply the map k -> L(k)/gcd(L(k),k-1) to the sequence A007850 of Giuga numbers, where L(k) is the Carmichael lambda function A002322.

Original entry on oeis.org

4, 60, 120, 2320, 1552848, 10080, 139714902540, 93294624780, 228657996794220, 4756736241732916394976, 20024071474861042488900, 2176937111336664570375832140, 15366743578393906356665002406454800354974137359272445859047945613961394951904884493965220
Offset: 1

Views

Author

N. J. A. Sloane, Jan 12 2014

Keywords

Crossrefs

A257923 Number of prime factors of the n-th Giuga number A007850(n).

Original entry on oeis.org

3, 4, 4, 5, 6, 6, 7, 7, 7, 8, 8, 8
Offset: 1

Views

Author

M. F. Hasler, Jul 13 2015

Keywords

Comments

Row lengths of the table A236434 of prime factors of the Giuga numbers.

Programs

Formula

a(n) = A001221(A007850(n)).

A054377 Primary pseudoperfect numbers: numbers n > 1 such that 1/n + sum 1/p = 1, where the sum is over the primes p | n.

Original entry on oeis.org

2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

Primary pseudoperfect numbers are the solutions of the "differential equation" n' = n-1, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 16 2009
Same as n > 1 such that 1 + sum n/p = n (and the only known numbers n > 1 satisfying the weaker condition that 1 + sum n/p is divisible by n). Hence a(n) is squarefree, and is pseudoperfect if n > 1. Remarkably, a(n) has exactly n (distinct) prime factors for n < 9. - Jonathan Sondow, Apr 21 2013
From the Wikipedia article: it is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect numbers. - Daniel Forgues, May 27 2013
Since the arithmetic derivative of a prime p is p' = 1, 2 is obviously the only prime in the sequence. - Daniel Forgues, May 29 2013
Just as 1 is not a prime number, 1 is also not a primary pseudoperfect number, according to the original definition by Butske, Jaje, and Mayernik, as well as Wikipedia and MathWorld. - Jonathan Sondow, Dec 01 2013
Is it always true that if a primary pseudoperfect number N > 2 is adjacent to a prime N-1 or N+1, then in fact N lies between twin primes N-1, N+1? See A235139. - Jonathan Sondow, Jan 05 2014
Also, integers n > 1 such that A069359(n) = n - 1. - Jonathan Sondow, Apr 16 2014

Examples

			From _Daniel Forgues_, May 24 2013: (Start)
With a(1) = 2, we have 1/2 + 1/2 = (1 + 1)/2 = 1;
with a(2) = 6 = 2 * 3, we have
  1/2 + 1/3 + 1/6 = (3 + 2 + 1)/6 = (1*3 + 3)/(2*3) = (1 + 1)/2 = 1;
with a(3) = 42 = 6 * 7, we have
  1/2 + 1/3 + 1/7 + 1/42 = (21 + 14 + 6 + 1)/42 =
  (3*7 + 2*7 + 7)/(6*7) = (3 + 2 + 1)/6 = 1;
with a(4) = 1806 = 42 * 43, we have
  1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = (903 + 602 + 258 + 42 + 1)/1806 =
  (21*43 + 14*43 + 6*43 + 43)/(42*43) = (21 + 14 + 6 + 1)/42 = 1;
with a(5) = 47058 (not oblong number), we have
  1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/47058 =
  (23529 + 15686 + 4278 + 2046 + 1518 + 1)/47058 = 1.
For n = 1 to 8, a(n) has n prime factors:
  a(1) = 2
  a(2) = 2 * 3
  a(3) = 2 * 3 *  7
  a(4) = 2 * 3 *  7 * 43
  a(5) = 2 * 3 * 11 * 23 *  31
  a(6) = 2 * 3 * 11 * 23 *  31 * 47059
  a(7) = 2 * 3 * 11 * 17 * 101 *   149 *       3109
  a(8) = 2 * 3 * 11 * 23 *  31 * 47059 * 2217342227 * 1729101023519
If a(n)+1 is prime, then a(n)*[a(n)+1] is also primary pseudoperfect. We have the chains: a(1) -> a(2) -> a(3) -> a(4); a(5) -> a(6). (End)
A primary pseudoperfect number (greater than 2) is oblong if and only if it is not the initial member of a chain. - _Daniel Forgues_, May 29 2013
If a(n)-1 is prime, then a(n)*(a(n)-1) is a Giuga number (A007850). This occurs for a(2), a(3), and a(5). See A235139 and the link "The p-adic order . . .", Theorem 8 and Example 1. - _Jonathan Sondow_, Jan 06 2014
		

Crossrefs

Programs

  • Mathematica
    pQ[n_] := (f = FactorInteger[n]; 1/n + Sum[1/f[[i]][[1]], {i, Length[f]}] == 1)
    Select[Range[2, 10^6], pQ[#] &] (* Robert Price, Mar 14 2020 *)
  • PARI
    isok(n) = if (n > 1, my(f=factor(n)[,1]); 1/n + sum(k=1, #f, 1/f[k]) == 1); \\ Michel Marcus, Oct 05 2017
  • Python
    from sympy import primefactors
    A054377 = [n for n in range(2,10**5) if sum([n/p for p in primefactors(n)]) +1 == n] # Chai Wah Wu, Aug 20 2014
    

Formula

A031971(a(n)) (mod a(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
A069359(a(n)) = a(n) - 1. - Jonathan Sondow, Apr 16 2014
a(n) == 36*(n-2) + 6 (mod 288) for n = 2,3,..,8. - Kieren MacMillan and Jonathan Sondow, Sep 20 2017

A168036 Difference between n' and n, where n' is the arithmetic derivative of n (A003415).

Original entry on oeis.org

0, -1, -1, -2, 0, -4, -1, -6, 4, -3, -3, -10, 4, -12, -5, -7, 16, -16, 3, -18, 4, -11, -9, -22, 20, -15, -11, 0, 4, -28, 1, -30, 48, -19, -15, -23, 24, -36, -17, -23, 28, -40, -1, -42, 4, -6, -21, -46, 64, -35, -5, -31, 4, -52, 27, -39, 36, -35, -27, -58, 32, -60, -29
Offset: 0

Views

Author

Paolo P. Lava, Nov 17 2009

Keywords

Comments

Let k = n'-n. For k = -1 n is a primary pseudoperfect number (A054377), apart from n=1; For k=0 n is p^p, being p a prime number (A051674); For k = 1 n is a Giuga number (A007850).

Crossrefs

Programs

  • Haskell
    a168036 n = a003415 n - n  -- Reinhard Zumkeller, May 22 2015
  • Maple
    with(numtheory);
    A168036:=proc(q)
    local n,p;
    for n from 0 to q do
      print(n*add(op(2,p)/op(1,p),p=ifactors(n)[2])-n); od; end:
    A168036(1000); # Paolo P. Lava, Nov 05 2012
  • Mathematica
    np[k_] := Module[{f, n, m, p}, If[k < 2, np[k] = 0; Return[0], If[PrimeQ[k], np[k] = 1; Return[1], f = FactorInteger[k, 2]; m = f[[1, 1]]; n = k/m; p = m np[n] + n np[m]; np[k] = p; Return[p]]]];
    Table[np[n] - n, {n, 0, 100}] (* Robert Price, Mar 14 2020 *)

Formula

a(A083347(n)) < 0; a(A051674(n)) = 0; a(A083348(n)) > 0. - Reinhard Zumkeller, May 22 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = -1 + Sum_{p prime} 1/(p*(p-1)) = A136141 - 1 = -0.226843... . - Amiram Eldar, Dec 08 2023

A326690 Denominator of the fraction (Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 4, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 28, 1, 1, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 45, 23, 1, 16, 49, 25, 51, 52, 1, 27, 11, 8, 19, 29, 1, 60, 1, 31, 63, 64, 65, 11, 1, 68, 69, 35, 1, 72
Offset: 1

Views

Author

Jonathan Sondow, Jul 18 2019

Keywords

Comments

Theorem. If n is a prime or a Carmichael number, then a(n) = A309132(n) = denominator of (N(n-1)/n + D(n-1)/n^2), where B(k) = N(k)/D(k) is the k-th Bernoulli number. This is a generalization of Theorem 1 in A309132 that A309132(p) = 1 if p is a prime. The proof generalizes that in A309132. As an application of Theorem, for n a prime or a Carmichael number one can compute A309132(n) without calculating Bernoulli numbers; see A309268.
A composite number n is a Giuga number A007850 if and only if a(n) = 1. (In fact, Sum_{prime p | n} 1/p - 1/n = 1 for all known Giuga numbers n.)
Semiprimes m = pq such that 1/p + 1/q - 1/m = p/q are exactly A190275. - Amiram Eldar and Thomas Ordowski, Jul 22 2019
The preceding comment may be rephrased as "Semiprimes m = pq such that A326689(m) = p and a(m) = q are exactly A190275." - Jonathan Sondow, Jul 22 2019
More generally, semiprimes m = pq such that 1/p + 1/q - 1/m = P/Q are exactly A190273, where P <> Q are primes. In other words, semiprimes m such that A326689(m) is prime and a(m) is prime are exactly A190273. - Amiram Eldar and Thomas Ordowski, Jul 25 2019

Examples

			-1/1, 0/1, 0/1, 1/4, 0/1, 2/3, 0/1, 3/8, 2/9, 3/5, 0/1, 3/4, 0/1, 4/7, 7/15, 7/16, 0/1, 7/9, 0/1, 13/20, 3/7, 6/11, 0/1, 19/24, 4/25, 7/13, 8/27, 17/28, 0/1, 1/1
a(12) = denominator of (Sum_{prime p | 12} 1/p - 1/12) = denominator of (1/2 + 1/3 - 1/12) = denominator of 3/4 = 4.
Computing A309132(561) involves numerator(B(560)) which has 865 digits. But 561 is a Carmichael number, so Theorem implies A309132(561) = a(561) = denominator(1/3 + 1/11 + 1/17 - 1/561) = denominator(90/187) = 187.
		

Crossrefs

Numerators are A326689. Quotients n/a(n) are A326691.
Cf. A069359, A007947 (denominator of Sum_{prime p | n} 1/p).

Programs

  • Magma
    [1] cat [Denominator(&+[1/p:p in PrimeDivisors(k)]-1/k):k in [2..72]]; // Marius A. Burtea, Jul 27 2019
  • Maple
    A326690 := n -> denom((A069359(n)-1)/n):
    seq(A326690(n), n=1..72); # Peter Luschny, Jul 22 2019
  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[ f[n], {n, 100}]
  • PARI
    a(n) = denominator(sumdiv(n, d, isprime(d)/d) - 1/n); \\ Michel Marcus, Jul 19 2019
    
  • SageMath
    p = lambda n: [n//f[0] for f in factor(n)]
    A326690 = lambda n: ((sum(p(n)) - 1)/n).denominator()
    [A326690(n) for n in (1..72)] # Peter Luschny, Jul 22 2019
    

Formula

a(n) = 1 if n is a prime or a Giuga number A007850.
a(n) = denominator of (N(n-1)/n + D(n-1)/n^2) if n is a Carmichael number A002997.
a(n) = denominator((A069359(n) - 1)/n). - Peter Luschny, Jul 22 2019

A235137 a(n) = Sum_{k = 1..n} k^phi(n), where phi(n) = A000010(n).

Original entry on oeis.org

1, 3, 14, 30, 979, 91, 184820, 8772, 978405, 25333, 40851766526, 60710, 36720042483591, 19092295, 5666482312, 9961449608, 76762718946972480009, 105409929, 164309788542828686799730, 70540730666, 15909231318568907, 67403375450475, 1433191209985108404653810959324, 351625763020, 15975648280734359596251725645
Offset: 1

Views

Author

Jonathan Sondow and Emmanuel Tsukerman, Jan 03 2014

Keywords

Comments

a(n) == -1 (mod n) if and only if n is prime or is a Giuga number A007850.
a(n) == 1 (mod n) if (and probably only if) n is a primary pseudoperfect number A054377.

Examples

			a(4) = 30 since 1^(phi(4)) + 2^(phi(4)) + 3^(phi(4)) + 4^(phi(4))= 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30.
a(5) = 979, since phi(5) = 4 and 1^4 + 2^4 + 3^4 + 4^4 + 5^4 = 1 + 16 + 81 + 256 + 625 = 979.
a(6) = 91, since phi(6) = 2 and 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 1 + 4 + 9 + 16 + 25 + 36 = 91.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[PowerMod[i, EulerPhi@n, n], {i, n}]
  • PARI
    a(n) = sum(k=1, n , k^eulerphi(n)); \\ Michel Marcus, Oct 21 2015

Formula

a(n) (mod n) = A235138(n).
Showing 1-10 of 52 results. Next