cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007850 Giuga numbers: composite numbers n such that p divides n/p - 1 for every prime divisor p of n.

Original entry on oeis.org

30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, 14737133470010574, 550843391309130318, 244197000982499715087866346, 554079914617070801288578559178, 1910667181420507984555759916338506
Offset: 1

Views

Author

D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn

Keywords

Comments

There are no other Giuga numbers with 8 or fewer prime factors. I did an exhaustive search using a PARI script which implemented Borwein and Girgensohn's method for finding n factor solutions given n - 2 factors. - Fred Schneider, Jul 04 2006
One further Giuga number is known with 10 prime factors, namely:
420001794970774706203871150967065663240419575375163060922876441614\
2557211582098432545190323474818 =
2 * 3 * 11 * 23 * 31 * 47059 * 2217342227 * 1729101023519 * 8491659218261819498490029296021 * 58254480569119734123541298976556403 but this may not be the next term. (See the Butske et al. paper.)
Conjecture: Giuga numbers are the solution of the differential equation n' = n + 1, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 16 2009
n is a Giuga number if and only if n' = a*n + 1 for some integer a > 0 (see our preprint in arXiv:1103.2298). - José María Grau Ribas, Mar 19 2011
A composite number n is a Giuga number if and only if Sum_{i = 1..n-1} i^phi(n) == -1 (mod n), where phi(n) = A000010(n). - Jonathan Sondow, Jan 03 2014
A composite number n is a Giuga number if and only if Sum_{prime p|n} 1/p = 1/n + an integer. (In fact, all known Giuga numbers n satisfy Sum_{prime p|n} 1/p = 1/n + 1.) - Jonathan Sondow, Jan 08 2014
The prime factors of a(n) are listed as n-th row of A236434. - M. F. Hasler, Jul 13 2015
Conjecture: let k = a(n) and k be the product of x(n) distinct prime factors where x(n) <= x(n+1). Then, for any even n, n/2 + 2 <= x(n) <= n/2 + 3 and, for any odd n, (n+1)/2 + 2 <= x(n) <= (n+1)/2 + 3. For any n > 1, there are y "old" distinct prime factors o(1)...o(y) such that o(1) = 2, o(2) = 3, and z "new" distinct prime factors n(1)...n(z) such that none of them - unlike the "old" ones - can be a divisor of a(q) while q < n; n(1) > o(y), y = x(n) - z >= 2, 2 <= z <= b where b is either 4, or 1/2*n. - Sergey Pavlov, Feb 24 2017
Conjecture: a composite n is a Giuga number if and only if Sum_{k=1..n-1} k^lambda(n) == -1 (mod n), where lambda(n) = A002322(n). - Thomas Ordowski and Giovanni Resta, Jul 25 2018
A composite number n is a Giuga number if and only if A326690(n) = 1. - Jonathan Sondow, Jul 19 2019
A composite n is a Giuga number if and only if n * A027641(phi(n)) == - A027642(phi(n)) (mod n^2). Note: Euler's phi function A000010 can be replaced by the Carmichael lambda function A002322. - Thomas Ordowski, Jun 07 2020
By von Staudt and Clausen theorem, a composite n is a Giuga number if and only if n * A027759(phi(n)) == A027760(phi(n)) (mod n^2). Note: Euler's phi function can be replaced by the Carmichael lambda function. - Thomas Ordowski, Aug 01 2020

Examples

			From _M. F. Hasler_, Jul 13 2015: (Start)
The prime divisors of 30 are {2, 3, 5}, and 2 divides 30/2-1 = 14, 3 divides 30/3-1 = 9, and 5 divides 30/5-1 = 5.
The prime divisors of 858 are {2, 3, 11, 13} and 858/2-1 = 428 is even, 858/3-1 = 285 is divisible by 3, 858/11-1 = 77 is a multiple of 11, and 858/13-1 = 65 = 13*5.
(End)
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 30, pp 11, Ellipses, Paris 2008.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := AllTrue[First /@ FactorInteger@ n, Divisible[n/# - 1, #] &]; Select[Range@ 100000, CompositeQ@ # && fQ@ # &] (* Michael De Vlieger, Oct 05 2015 *)
  • PARI
    is(n)=if(isprime(n), return(0)); my(f=factor(n)[,1]); for(i=1,#f, if((n/f[i])%f[i]!=1, return(0))); n>1 \\ Charles R Greathouse IV, Apr 28 2015
    
  • Python
    from itertools import count, islice
    from sympy import isprime, primefactors
    def A007850_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda x: not isprime(x) and all((x//p-1) % p == 0 for p in primefactors(x)), count(max(startvalue,2)))
    A007850_list = list(islice(A007850_gen(),4)) # Chai Wah Wu, Feb 19 2022

Formula

Sum_{i = 1..a(n)-1} i^phi(a(n)) == -1 (mod a(n)). - Jonathan Sondow, Jan 03 2014

Extensions

a(12) from Fred Schneider, Jul 04 2006
Further references from Fred Schneider, Aug 19 2006
Definition corrected by Jonathan Sondow, Sep 16 2012

A236433 List of primes generated by factoring successive primary pseudoperfect numbers (A054377).

Original entry on oeis.org

2, 2, 3, 2, 3, 7, 2, 3, 7, 43, 2, 3, 11, 23, 31, 2, 3, 11, 23, 31, 47059, 2, 3, 11, 17, 101, 149, 3109, 2, 3, 11, 23, 31, 47059, 2217342227, 1729101023519
Offset: 1

Views

Author

Jonathan Sondow, Jan 25 2014

Keywords

Comments

It is unknown whether there are infinitely many primary pseudoperfect numbers or any odd ones.
See A054377 for other comments, references, links, etc.
For prime factors of Giuga numbers, see A236434; of terms in Sylvester's sequence, see A126263.

Examples

			2 = 2.
6 = 2 * 3.
42 = 2 * 3 * 7.
1806 = 2 * 3 * 7 * 43.
47058 = 2 *  3 * 11 * 23 * 31.
2214502422 =  2 *  3 * 11 * 23 * 31 * 47059.
52495396602 =  2 * 3 * 11 * 17 * 101 * 149 * 3109.
8490421583559688410706771261086 = 2 *  3 * 11 * 23 * 31 * 47059 * 2217342227 * 1729101023519.
		

Crossrefs

Programs

  • Mathematica
    A054377 = Cases[Import["https://oeis.org/A054377/b054377.txt", "Table"], {, }][[All, 2]];
    First /@ Flatten[FactorInteger[A054377], 1] (* Robert Price, Mar 14 2020 *)

A216823 Prime factors of Giuga numbers A007850 with 8 or fewer prime divisors.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 31, 41, 43, 59, 71, 103, 163, 1381, 1831, 3041, 4447, 47057, 47059, 47137, 61559, 67213, 138683, 713863, 775807, 2861051, 28282147, 29133437, 2259696349, 3892535183, 110725121051, 1456230512169437
Offset: 1

Views

Author

Jonathan Sondow, Sep 17 2012

Keywords

Comments

See A007850 for comments, references, and links.

Examples

			30 = 2*3*5 is a Giuga number, so 2, 3, 5 are members.
		

Crossrefs

A216824 Largest prime factor of the n-th Giuga number A007850(n).

Original entry on oeis.org

5, 13, 41, 59, 47057, 4447, 775807, 713863, 29133437, 3892535183, 110725121051, 1456230512169437
Offset: 1

Views

Author

Jonathan Sondow, Sep 17 2012

Keywords

Comments

See A007850 for comments, references, and links.

Examples

			A007850(1) = 30 = 2*3*5 is the first Giuga number, so a(1) = 5.
		

Crossrefs

A257923 Number of prime factors of the n-th Giuga number A007850(n).

Original entry on oeis.org

3, 4, 4, 5, 6, 6, 7, 7, 7, 8, 8, 8
Offset: 1

Views

Author

M. F. Hasler, Jul 13 2015

Keywords

Comments

Row lengths of the table A236434 of prime factors of the Giuga numbers.

Programs

Formula

a(n) = A001221(A007850(n)).
Showing 1-5 of 5 results.