cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A054377 Primary pseudoperfect numbers: numbers n > 1 such that 1/n + sum 1/p = 1, where the sum is over the primes p | n.

Original entry on oeis.org

2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

Primary pseudoperfect numbers are the solutions of the "differential equation" n' = n-1, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 16 2009
Same as n > 1 such that 1 + sum n/p = n (and the only known numbers n > 1 satisfying the weaker condition that 1 + sum n/p is divisible by n). Hence a(n) is squarefree, and is pseudoperfect if n > 1. Remarkably, a(n) has exactly n (distinct) prime factors for n < 9. - Jonathan Sondow, Apr 21 2013
From the Wikipedia article: it is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect numbers. - Daniel Forgues, May 27 2013
Since the arithmetic derivative of a prime p is p' = 1, 2 is obviously the only prime in the sequence. - Daniel Forgues, May 29 2013
Just as 1 is not a prime number, 1 is also not a primary pseudoperfect number, according to the original definition by Butske, Jaje, and Mayernik, as well as Wikipedia and MathWorld. - Jonathan Sondow, Dec 01 2013
Is it always true that if a primary pseudoperfect number N > 2 is adjacent to a prime N-1 or N+1, then in fact N lies between twin primes N-1, N+1? See A235139. - Jonathan Sondow, Jan 05 2014
Also, integers n > 1 such that A069359(n) = n - 1. - Jonathan Sondow, Apr 16 2014

Examples

			From _Daniel Forgues_, May 24 2013: (Start)
With a(1) = 2, we have 1/2 + 1/2 = (1 + 1)/2 = 1;
with a(2) = 6 = 2 * 3, we have
  1/2 + 1/3 + 1/6 = (3 + 2 + 1)/6 = (1*3 + 3)/(2*3) = (1 + 1)/2 = 1;
with a(3) = 42 = 6 * 7, we have
  1/2 + 1/3 + 1/7 + 1/42 = (21 + 14 + 6 + 1)/42 =
  (3*7 + 2*7 + 7)/(6*7) = (3 + 2 + 1)/6 = 1;
with a(4) = 1806 = 42 * 43, we have
  1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = (903 + 602 + 258 + 42 + 1)/1806 =
  (21*43 + 14*43 + 6*43 + 43)/(42*43) = (21 + 14 + 6 + 1)/42 = 1;
with a(5) = 47058 (not oblong number), we have
  1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/47058 =
  (23529 + 15686 + 4278 + 2046 + 1518 + 1)/47058 = 1.
For n = 1 to 8, a(n) has n prime factors:
  a(1) = 2
  a(2) = 2 * 3
  a(3) = 2 * 3 *  7
  a(4) = 2 * 3 *  7 * 43
  a(5) = 2 * 3 * 11 * 23 *  31
  a(6) = 2 * 3 * 11 * 23 *  31 * 47059
  a(7) = 2 * 3 * 11 * 17 * 101 *   149 *       3109
  a(8) = 2 * 3 * 11 * 23 *  31 * 47059 * 2217342227 * 1729101023519
If a(n)+1 is prime, then a(n)*[a(n)+1] is also primary pseudoperfect. We have the chains: a(1) -> a(2) -> a(3) -> a(4); a(5) -> a(6). (End)
A primary pseudoperfect number (greater than 2) is oblong if and only if it is not the initial member of a chain. - _Daniel Forgues_, May 29 2013
If a(n)-1 is prime, then a(n)*(a(n)-1) is a Giuga number (A007850). This occurs for a(2), a(3), and a(5). See A235139 and the link "The p-adic order . . .", Theorem 8 and Example 1. - _Jonathan Sondow_, Jan 06 2014
		

Crossrefs

Programs

  • Mathematica
    pQ[n_] := (f = FactorInteger[n]; 1/n + Sum[1/f[[i]][[1]], {i, Length[f]}] == 1)
    Select[Range[2, 10^6], pQ[#] &] (* Robert Price, Mar 14 2020 *)
  • PARI
    isok(n) = if (n > 1, my(f=factor(n)[,1]); 1/n + sum(k=1, #f, 1/f[k]) == 1); \\ Michel Marcus, Oct 05 2017
  • Python
    from sympy import primefactors
    A054377 = [n for n in range(2,10**5) if sum([n/p for p in primefactors(n)]) +1 == n] # Chai Wah Wu, Aug 20 2014
    

Formula

A031971(a(n)) (mod a(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
A069359(a(n)) = a(n) - 1. - Jonathan Sondow, Apr 16 2014
a(n) == 36*(n-2) + 6 (mod 288) for n = 2,3,..,8. - Kieren MacMillan and Jonathan Sondow, Sep 20 2017

A126263 List of primes generated by factoring successive integers in Sylvester's sequence (A000058).

Original entry on oeis.org

2, 3, 7, 43, 13, 139, 3263443, 547, 607, 1033, 31051, 29881, 67003, 9119521, 6212157481, 5295435634831, 31401519357481261, 77366930214021991992277, 181, 1987, 112374829138729, 114152531605972711, 35874380272246624152764569191134894955972560447869169859142453622851
Offset: 1

Views

Author

Howard L. Warth (hlw6c2(AT)umr.edu), Dec 22 2006

Keywords

Comments

The list is infinite and no term repeats since Sylvester's sequence is an infinite coprime sequence.
However, it appears to be unknown whether all terms in A000058 are squarefree. - Jeppe Stig Nielsen, Apr 23 2020

Examples

			2 = 2, 3 = 3, 7 = 7, 43 = 43, 1807 = 13 * 139, 3263443 = 3263443,
10650056950807 = 547 * 607 * 1033 * 31051,
113423713055421844361000443 = 29881 * 67003 * 9119521 * 6212157481,
12864938683278671740537145998360961546653259485195807 = 5295435634831 * 31401519357481261 * 77366930214021991992277.
165506647324519964198468195444439180017513152706377497841851388766535868639572406808911988131737645185443 = 181 * 1987 * 112374829138729 * 114152531605972711 * 35874380272246624152764569191134894955972560447869169859142453622851. - _Jonathan Sondow_, Jan 26 2014
		

References

  • Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 9.

Crossrefs

Programs

  • Maple
    a(0):=2; for n from 0 to 8 do a(n+1):=a(n)^2-a(n)+1;ifactor(%); od;
  • Mathematica
    Flatten[FactorInteger[NestList[#^2 - # + 1 &, 2, 8]][[All, All, 1]]] (* Paolo Xausa, Sep 09 2024 *)
  • PARI
    v=[2]; for(i=1,10, v=concat(v,Set(factor(vecprod(v)+1)[,1]))); v \\ Charles R Greathouse IV, Oct 02 2014
  • Sage
    v = [2]
    for n in range(12):
        v.append(v[-1]^2-v[-1]+1)
        print(prime_divisors(v[-1])) # William Stein, Aug 26 2009
    

Extensions

Offset corrected by N. J. A. Sloane, Aug 20 2009
a(23)-a(27) from William Stein (wstein(AT)gmail.com), Aug 20 2009, Aug 21 2009
a(17) corrected by D. S. McNeil, Dec 10 2010
b-file updated at the suggestion of Hans Havermann by Ray Chandler, Feb 27 2015

A236434 Table whose n-th row lists the prime factors of the n-th Giuga number A007850(n).

Original entry on oeis.org

2, 3, 5, 2, 3, 11, 13, 2, 3, 7, 41, 2, 3, 11, 17, 59, 2, 3, 11, 23, 31, 47057, 2, 3, 7, 43, 3041, 4447, 2, 3, 7, 59, 163, 1381, 775807, 2, 3, 7, 71, 103, 67213, 713863, 2, 3, 7, 71, 103, 61559, 29133437, 2, 3, 11, 23, 31, 47137, 28282147, 3892535183, 2, 3, 11, 23, 31, 47059, 2259696349, 110725121051, 2, 3, 7, 43, 1831, 138683, 2861051, 1456230512169437
Offset: 1

Views

Author

Jonathan Sondow, Jan 25 2014

Keywords

Comments

It is unknown whether there are infinitely many Giuga numbers or any odd ones.
See A007850 for other comments, references, links, etc.
For prime factors of primary pseudoperfect numbers, see A236433; of terms in Sylvester's sequence, see A126263.

Examples

			30 = 2 * 3 * 5.
858 = 2 * 3 * 11 * 13.
1722 = 2 * 3 * 7 * 41.
66198 = 2 * 3 * 11 * 17 * 59.
2214408306 = 2 * 3 * 11 * 23 * 31 * 47057.
24423128562 = 2 * 3 * 7 * 43 * 3041 * 4447.
432749205173838 = 2 * 3 * 7 * 59 * 163 * 1381 * 775807.
14737133470010574 = 2 * 3 * 7 * 71 * 103 * 67213 * 713863.
550843391309130318 = 2 * 3 * 7 * 71 * 103 * 61559 * 29133437.
244197000982499715087866346 = 2 * 3 * 11 * 23 * 31 * 47137 * 28282147 * 3892535183.
554079914617070801288578559178 = 2 * 3 * 11 * 23 * 31 * 47059 * 2259696349 * 110725121051.
1910667181420507984555759916338506 = 2 * 3 * 7 * 43 * 1831 * 138683 * 2861051 * 1456230512169437.
Another Giuga number (but possibly not the 13th) is 4200017949707747062038711509670656632404195753751630609228764416142557211582098432545190323474818 = 2 * 3 * 11 * 23 * 31 * 47059 * 2217342227 * 1729101023519 * 8491659218261819498490029296021 * 58254480569119734123541298976556403.
		

Crossrefs

A216825 Prime factors of the first 8 primary pseudoperfect numbers A054377.

Original entry on oeis.org

2, 3, 7, 11, 17, 23, 31, 43, 101, 149, 3109, 47059, 2217342227, 1729101023519
Offset: 1

Views

Author

Jonathan Sondow, Sep 17 2012

Keywords

Comments

See A054377 for comments, references, and links.

Examples

			42 = 2*3*7 is the third primary pseudoperfect number, so 2, 3, 7 are members.
5 is not a factor of any of the first 8 primary pseudoperfect numbers, so 5 is not a member.
		

Crossrefs

Programs

  • Mathematica
    A054377 = Cases[Import["https://oeis.org/A054377/b054377.txt", "Table"], {, }][[All, 2]];
    Union[First /@ Flatten[FactorInteger[A054377], 1]] (* Robert Price, Mar 14 2020 *)

A216826 Largest prime factor of the n-th primary pseudoperfect number A054377(n).

Original entry on oeis.org

2, 3, 7, 43, 31, 47059, 3109, 1729101023519
Offset: 1

Views

Author

Jonathan Sondow, Sep 20 2012

Keywords

Comments

See A054377 for comments, references, and links.

Examples

			42 = 2*3*7 is the third primary pseudoperfect number, so a(3) = 7.
		

Crossrefs

Programs

Showing 1-5 of 5 results.