cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235199 Self-inverse and multiplicative permutation of integers: For n < 4, a(n)=n, a(5)=7 and a(7)=5, a(p_i) = p_{a(i)} for primes with index i > 4, and a(u * v) = a(u) * a(v) for u, v > 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 5, 8, 9, 14, 17, 12, 13, 10, 21, 16, 11, 18, 19, 28, 15, 34, 23, 24, 49, 26, 27, 20, 43, 42, 59, 32, 51, 22, 35, 36, 37, 38, 39, 56, 41, 30, 29, 68, 63, 46, 73, 48, 25, 98, 33, 52, 53, 54, 119, 40, 57, 86, 31, 84, 61, 118, 45, 64, 91, 102
Offset: 0

Views

Author

Antti Karttunen, Jan 04 2014

Keywords

Comments

The permutation satisfies A000040(a(n)) = a(A000040(n)) for all positive n except n=3 or 4, and is self-inverse. It swaps 5 & 7, maps all larger primes p_i (with index i > 4) to p_{a(i)}, and lets the multiplicativity take care of the rest.
It can be viewed also as a "signature-permutation" for a bijection of non-oriented rooted trees, mapped through Matula-Goebel numbers (cf. A061773). The bijection will swap the subtrees encoded by primes 5 and 7, wherever they occur as the terminal branches of the tree:
....................
.o..................
.|..................
.o.............o...o
.|..............\./.
.o.....<--->.....o..
.|...............|..
.x...............x..
.5...............7..
That is, any branch which ends at least in three edges long unbranched stem, will be changed so that its last two edges will become V-branch. Vice versa, any branch of the tree that ends with three edges in Y-formation, will be transformed so that those three edges will be straightened to an unbranching stem of three edges.
This permutation commutes with A235201, i.e. a(A235201(n)) = A235201(a(n)) for all n.
Permutation fixes n! for n=0, 1, 2, 3, 4, 7, 8 and 9.
Note also that a(5!) = a(120) = 168 = 120+(2*4!) and a(10!) = 5080320 = 3628800+(4*9!).

Crossrefs

Composition with A234840 gives A234743 & A234744.
List below gives similarly constructed permutations, which all force a swap of two small numbers, with (the rest of) primes permuted with the sequence itself and the new positions of composite numbers defined by the multiplicative property:
A234840 (swaps 2 & 3, conjugates A008578 back to itself).
A235200 (swaps 3 & 5, conjugates A065091 back to itself).
A235201 (swaps 3 & 4, conjugates A000040 back to itself).
A235487 (swaps 7 & 8, conjugates A000040 back to itself).
A235489 (swaps 8 & 9, conjugates A000040 back to itself).

Formula

For n < 4, a(n)=n, a(5)=7 and a(7)=5, a(p_i) = p_{a(i)} for primes with index i > 4, and a(u * v) = a(u) * a(v) for u, v > 0.
A000035(a(n)) = A000035(n) = (n mod 2) for all n. [Even terms occur only on even indices and odd terms only on odd indices, respectively]