A271499 Positive numbers n such that the number of 1's in the binary expansion of n is not a power of 2.
7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 31, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 63, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 95, 97, 98, 100, 103, 104, 107, 109, 110, 111, 112, 115, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 131, 133, 134, 137, 138, 140
Offset: 1
Examples
127 = 1111111_2 has seven 1's, so is a term (this distinguishes the sequence from A235336).
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@ 140, ! IntegerQ@ Log2@ First@ DigitCount[#, 2] &] (* Michael De Vlieger, Apr 16 2016 *)
-
PARI
lista(nn) = {for (n=1, nn, my(nbd = hammingweight(n)); if (!((nbd==1) || (nbd==2) || (ispower(nbd,,&k) && (k==2))), print1(n, ", ")););} \\ Michel Marcus, Apr 16 2016
-
Python
A271499_list = [n for n in range(1,10**6) if bin(bin(n).count('1')).count('1') != 1] # Chai Wah Wu, Apr 16 2016