A235344 Numbers m with m - 1, m + 1 and q(m) + 1 all prime, where q(.) is the strict partition function (A000009).
4, 6, 18, 42, 72, 102, 270, 282, 312, 618, 1032, 1062, 1320, 1950, 2082, 3528, 7350, 7488, 10332, 15138, 17388, 21600, 40038, 44700, 134922, 156258, 187908, 243708, 339138, 389568, 495360, 610920, 761712, 911292, 916218, 943800, 1013532, 1217472, 1312602
Offset: 1
Examples
a(1) = 4 since 4 - 1, 4 + 1 and q(4) + 1 = 3 are all prime. a(2) = 6 since 6 - 1, 6 + 1 and q(6) + 1 = 5 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..51
- Zhi-Wei Sun, Twin primes and the strict partition function, a message to Number Theory List, Jan. 15, 2014.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Crossrefs
Programs
-
Mathematica
f[k_]:=PartitionsQ[Prime[k]+1]+1 n=0;Do[If[PrimeQ[Prime[k]+2]&&PrimeQ[f[k]],n=n+1;Print[n," ",Prime[k]+1]],{k,1,10000}]
Comments