cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235348 Series reversion of x*(1-2*x-5*x^2)/(1-x^2).

Original entry on oeis.org

1, 2, 12, 82, 636, 5266, 45684, 409706, 3768132, 35346082, 336854844, 3252391170, 31746462732, 312755404818, 3105750620772, 31054695744570, 312404601250644, 3159598296022978, 32108181705850860, 327682918265502002, 3357089384702757276
Offset: 1

Views

Author

Fung Lam, Jan 13 2014

Keywords

Comments

Sum of turbulence series A107841 and A235347.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-5*x^2)/(1-x^2), {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Jan 29 2014 *)
  • PARI
    Vec( serreverse(x*(1-2*x-5*x^2)/(1-x^2) +O(x^66) ) ) \\ Joerg Arndt, Jan 14 2014
  • Python
    # R. J. Mathar, 2023-03-28
    class A235348() :
        def _init_(self) :
            self.a = [1, 2, 12, 82, 636, 5266]
        def at(self, n):
            if n <= len(self.a):
                return self.a[n-1]
            else:
                rhs = -3*(n-1)*(160*n-237)*self.at(n-1) \
                +3*(-422*n**2+1721*n-1713)*self.at(n-2) \
                +2*(-67*n**2+388*n-552)*self.at(n-3) \
                +(137*n**2-1352*n+3279)*self.at(n-4) \
                +(7*n-37)*(n-6)*self.at(n-5) -(n-6)*(n-7)*self.at(n-6)
                rhs //= (-54*n*(n-1))
                self.a.append(rhs)
                return self.a[-1]
    a235348 = A235348()
    for n in range(1,12):
        print(a235348.at(n))
    # a235348.
    

Formula

D-finite with recurrence 54*n*(n-1)*a(n) -3*(n-1)*(160*n-237)*a(n-1) +3*(-422*n^2+1721*n-1713)*a(n-2) +2*(-67*n^2+388*n-552)*a(n-3) +(137*n^2-1352*n+3279)*a(n-4) +(7*n-37)*(n-6)*a(n-5) -(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Mar 24 2023