cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235394 Primes whose decimal representation is a valid number in base 8 and interpreted as such is again a prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 23, 37, 53, 73, 103, 107, 131, 211, 227, 263, 277, 307, 337, 373, 401, 431, 433, 463, 467, 521, 541, 547, 557, 577, 631, 643, 661, 673, 701, 1013, 1063, 1151, 1153, 1201, 1223, 1327, 1423, 1451, 1453, 1531, 1567, 1613, 1627, 1663, 1721, 2011, 2017
Offset: 1

Views

Author

Robert G. Wilson v, Jan 09 2014

Keywords

Examples

			a(5) = 13_10 = prime(5), 13_8 = 3 + 1*8 = 11_10 = prime(4).
a(8) = 53_10 = prime(16), 53_8 = 3 + 5*8 = 43_10 = prime(14). - _Marius A. Burtea_, Jun 30 2019
		

Crossrefs

Programs

  • Magma
    [n:n in PrimesUpTo(2100)| Max(Intseq(n,10)) le 7 and IsPrime(Seqint(Intseq(Seqint(Intseq(n),8))))]; // Marius A. Burtea, Jun 30 2019
  • Mathematica
    Select[FromDigits@# & /@ IntegerDigits[ Prime@ Range@ 270, 8], PrimeQ]
  • PARI
    fixBase(n,oldBase,newBase)=my(d=digits(n,oldBase),t=newBase-1); for(i=1,#d, if(d[i]>t, for(j=i,#d, d[j]=t); break)); fromdigits(d,newBase)
    list(lim)=my(v=List(),t); forprime(p=2,fixBase(lim\1,10,8), if(isprime(t=fromdigits(digits(p,8),10)), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Nov 07 2016