cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A235453 Triangle T(n, k) = Number of non-equivalent (mod D_4) ways to arrange k indistinguishable points on an n X n square grid so that no three of them are collinear. Triangle read by rows.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 3, 8, 13, 15, 5, 1, 3, 21, 70, 181, 217, 142, 28, 4, 6, 49, 290, 1253, 3192, 4699, 3385, 1076, 110, 5, 6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11, 10, 171, 2266, 22302, 149217, 672506, 1958674, 3531747, 3695848, 2068757
Offset: 1

Views

Author

Heinrich Ludwig, Jan 12 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= 2n. First row corresponds to n = 1.
Without the restriction "non-equivalent (mod D_4)" the numbers are given by triangle A194193. (But this one is read by antidiagonals!)
T(n, 2n) = A000769(n).
2n is an upper bound on the number of points that can be placed on the grid. For large n, it is conjectured that this bound is not reached (see MathWorld link).

Examples

			Triangle begins
1,  0;
1,  2,   1,    1;
3,  8,  13,   15,     5,     1;
3, 21,  70,  181,   217,   142,     28,      4;
6, 49, 290, 1253,  3192,  4699,   3385,   1076,   110,     5;
6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11;
...
		

Crossrefs

Column 1 is A008805
Column 2 is A014409
Column 3 is A235454
Column 4 is A235455
Column 5 is A235456
Column 6 is A235457
Column 7 is A235458

A235454 Number of non-equivalent (mod D_4) ways to arrange 3 points on an n X n square grid so that they are not collinear.

Original entry on oeis.org

1, 13, 70, 290, 867, 2266, 5068, 10475, 19764, 35406, 59817, 97375, 152154
Offset: 2

Views

Author

Heinrich Ludwig, Jan 12 2014

Keywords

Comments

Column 3 of A235453.
Also number of non-equivalent triangles in an n X n grid.
Without the restriction "non-equivalent (mod D_4)" the numbers are given by A045996, n >= 2.

Examples

			There are a(3) = 13 non-equivalent ways to place 3 points on a 3 X 3 grid:
  . . .   . . .   X . .   . X .   . . .   . X .   . X .
  X . .   X . .   . . .   . . .   . X .   X . X   X X .
  X X .   X . X   X . X   X . X   X . X   . . .   . . .
-
  . . .   . . .   . . .   . X .   . X .   . . X
  X . X   . X X   X X .   . . X   X . .   X . .
  X . .   X . .   X . .   X . .   X . .   X . .
		

Crossrefs

Cf. A235453, A045996, A235455 (4 points), A235456 (5 points), A235457 (6 points), A235458 (7 points).

Extensions

a(13), a(14) from Heinrich Ludwig, Nov 16 2016

A235456 Number of non-equivalent (mod D_4) ways to arrange 5 points on an n X n square grid so that no three points are collinear.

Original entry on oeis.org

5, 217, 3192, 27041, 149217, 650566, 2317137, 7124316, 19459757, 48617666, 111797647, 241575473
Offset: 3

Views

Author

Heinrich Ludwig, Jan 12 2014

Keywords

Comments

Column 5 of A235453.
Without the restriction "non-equivalent (mod D_4)" the numbers are given by A194190, n >= 3.

Examples

			There are a(3) = 5 non-equivalent ways to place 5 points (X) on a 3 X 3 grid:
  X . X    X . X    . X X    X X .    X . X
  X . X    X . .    X . X    X . .    X X .
  . X .    . X X    . X .    . X X    . X .
		

Crossrefs

Cf. A235453, A194190, A235454 (3 points), A235455 (4 points), A235457 (6 points), A235458 (7 points)

Extensions

a(13), a(14) from Heinrich Ludwig, Nov 16 2016

A235457 Number of non-equivalent (mod D_4) ways to arrange 6 points on an n X n square grid so that no three points are collinear.

Original entry on oeis.org

1, 142, 4699, 77970, 672506, 4338248, 21167201, 85351595, 294664274, 911848844, 2528561187, 6501165477
Offset: 3

Views

Author

Heinrich Ludwig, Jan 12 2014

Keywords

Comments

Column 6 of A235453.
Without the restriction "non-equivalent (mod D_4)" the numbers are given by A194191, n >= 3.

Examples

			There is a(3) = 1 way to place 6 points (X) on a 3 X 3 grid (without rotations and reflections):
   . X X
   X . X
   X X .
		

Crossrefs

Cf. A235453, A194191, A235454 (3 points), A235455 (4 points), A235456 (5 points), A235458 (7 points).

Extensions

a(13), a(14) from Heinrich Ludwig, Nov 16 2016

A235458 Number of non-equivalent (mod D_4) ways to arrange 7 points on an n X n square grid so that no three points are collinear.

Original entry on oeis.org

28, 3385, 134353, 1958674, 19929645, 138586349, 753795278, 3356614240, 13108210508, 44374441652, 137349454120
Offset: 4

Views

Author

Heinrich Ludwig, Jan 12 2014

Keywords

Comments

Column 7 of A235453.
Without the restriction "non-equivalent (mod D_4)" the numbers are given by A194192, n >= 4.

Examples

			There are a(4) = 28 non-equivalent ways to place 7 points (X) on a 4 X 4 grid. Example:
   . X X .
   . . . X
   X . . X
   X X . .
		

Crossrefs

Cf. A235453, A194192, A235454 (3 points), A235455 (4 points), A235456 (5 points), A235457 (6 points).

Extensions

a(13), a(14) from Heinrich Ludwig, Nov 16 2016

A279448 Number of nonequivalent ways to place 4 points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.

Original entry on oeis.org

0, 1, 17, 202, 1397, 6582, 24185, 73496, 195086, 463875, 1013505, 2061426, 3956947, 7222992, 12640817, 21312992, 34801420, 55215621, 85424721, 129174250, 191397185, 278361226, 398108777, 560635032, 778491962, 1066995527, 1445034305, 1935301746, 2565356031, 3367870500
Offset: 1

Views

Author

Heinrich Ludwig, Dec 18 2016

Keywords

Comments

Column 5 of A279453.
Rotations and reflections of placements are not counted. For numbers if they are to be counted see A279438.
For condition "no more than 2 points on straight lines at any angle", see A235455.

Crossrefs

Same problem but 2,3,5,6,7 points: A014409, A279447, A279449, A279450, A279451.

Programs

  • PARI
    concat(0, Vec(x^2*(1 +13*x +135*x^2 +622*x^3 +1449*x^4 +2143*x^5 +1557*x^6 +781*x^7 +34*x^8 -8*x^9 -8*x^10 +x^11) / ((1 -x)^9*(1 +x)^5) + O(x^40))) \\ Colin Barker, Dec 18 2016

Formula

a(n) = (n^8 - 14*n^6 + 30*n^5 + 12*n^4 - 60*n^3 + 40*n^2)/192 + IF(MOD(n, 2) = 1, 4*n^4 - 20*n^3 + 22*n^2 - 2*n - 7)/64.
a(n) = 4*a(n-1) - a(n-2) - 16*a(n-3) + 19*a(n-4) + 20*a(n-5) - 45*a(n-6) + 45*a(n-8) - 20*a(n-9) - 19*a(n-10) + 16*a(n-11) + a(n-12) - 4*a(n-13) + a(n-14).
G.f.: x^2*(1 +13*x +135*x^2 +622*x^3 +1449*x^4 +2143*x^5 +1557*x^6 +781*x^7 +34*x^8 -8*x^9 -8*x^10 +x^11) / ((1 -x)^9*(1 +x)^5). - Colin Barker, Dec 18 2016
Showing 1-6 of 6 results.