A235453
Triangle T(n, k) = Number of non-equivalent (mod D_4) ways to arrange k indistinguishable points on an n X n square grid so that no three of them are collinear. Triangle read by rows.
Original entry on oeis.org
1, 0, 1, 2, 1, 1, 3, 8, 13, 15, 5, 1, 3, 21, 70, 181, 217, 142, 28, 4, 6, 49, 290, 1253, 3192, 4699, 3385, 1076, 110, 5, 6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11, 10, 171, 2266, 22302, 149217, 672506, 1958674, 3531747, 3695848, 2068757
Offset: 1
Triangle begins
1, 0;
1, 2, 1, 1;
3, 8, 13, 15, 5, 1;
3, 21, 70, 181, 217, 142, 28, 4;
6, 49, 290, 1253, 3192, 4699, 3385, 1076, 110, 5;
6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11;
...
A235454
Number of non-equivalent (mod D_4) ways to arrange 3 points on an n X n square grid so that they are not collinear.
Original entry on oeis.org
1, 13, 70, 290, 867, 2266, 5068, 10475, 19764, 35406, 59817, 97375, 152154
Offset: 2
There are a(3) = 13 non-equivalent ways to place 3 points on a 3 X 3 grid:
. . . . . . X . . . X . . . . . X . . X .
X . . X . . . . . . . . . X . X . X X X .
X X . X . X X . X X . X X . X . . . . . .
-
. . . . . . . . . . X . . X . . . X
X . X . X X X X . . . X X . . X . .
X . . X . . X . . X . . X . . X . .
A235455
Number of non-equivalent (mod D_4) ways to arrange 4 points on an n X n square grid so that no three points are collinear.
Original entry on oeis.org
1, 15, 181, 1253, 6044, 22302, 68661, 183645, 439578, 964938, 1974128, 3801457, 6966581
Offset: 2
There are a(3) = 15 non-equivalent ways to place 4 points (X) on a 3 X 3 grid. Examples are:
X . X . X . X X .
. . . X . X X . .
X . X . X . . . X
A235456
Number of non-equivalent (mod D_4) ways to arrange 5 points on an n X n square grid so that no three points are collinear.
Original entry on oeis.org
5, 217, 3192, 27041, 149217, 650566, 2317137, 7124316, 19459757, 48617666, 111797647, 241575473
Offset: 3
There are a(3) = 5 non-equivalent ways to place 5 points (X) on a 3 X 3 grid:
X . X X . X . X X X X . X . X
X . X X . . X . X X . . X X .
. X . . X X . X . . X X . X .
A235457
Number of non-equivalent (mod D_4) ways to arrange 6 points on an n X n square grid so that no three points are collinear.
Original entry on oeis.org
1, 142, 4699, 77970, 672506, 4338248, 21167201, 85351595, 294664274, 911848844, 2528561187, 6501165477
Offset: 3
There is a(3) = 1 way to place 6 points (X) on a 3 X 3 grid (without rotations and reflections):
. X X
X . X
X X .
A279451
Number of nonequivalent ways to place 7 points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.
Original entry on oeis.org
0, 0, 0, 115, 11810, 326190, 4444935, 38675954, 246563232, 1248782460, 5296300670, 19499431941, 63958228738, 190528987506, 523151460045, 1339408935540, 3227223506896, 7372750196952, 16069268866908, 33586411339335, 67610793877650, 131569779776182, 248290280743571
Offset: 1
-
Table[(n^14 - 91 n^12 + 420 n^11 + 693 n^10 - 10500 n^9 + 33647 n^8 - 45316 n^7 + 3682 n^6 + 62300 n^5 - 51996 n^4 - 28504 n^3 + 54384 n^2 - 18720 n)/40320 + Boole[OddQ@ n] (2 n^7 - 17 n^6 + 50 n^5 - 59 n^4 + 38 n^3 - 71 n^2 + 102 n - 45)/384, {n, 23}] (* or *)
Rest@ CoefficientList[Series[x^4*(115 + 11005 x + 245015 x^2 + 2317550 x^3 + 12037814 x^4 + 39232894 x^5 + 85494738 x^6 + 129182670 x^7 + 135873108 x^8 + 97856368 x^9 + 44499480 x^10 + 9709722 x^11 - 1359254 x^12 - 1352974 x^13 - 257282 x^14 + 13866 x^15 + 7705 x^16 + 419 x^17 + x^18)/((1 - x)^15*(1 + x)^8), {x, 0, 23}], x] (* Michael De Vlieger, Dec 23 2016 *)
-
concat(vector(3), Vec(x^4*(115 +11005*x +245015*x^2 +2317550*x^3 +12037814*x^4 +39232894*x^5 +85494738*x^6 +129182670*x^7 +135873108*x^8 +97856368*x^9 +44499480*x^10 +9709722*x^11 -1359254*x^12 -1352974*x^13 -257282*x^14 +13866*x^15 +7705*x^16 +419*x^17 +x^18) / ((1 -x)^15*(1 +x)^8) + O(x^30))) \\ Colin Barker, Dec 23 2016
Showing 1-6 of 6 results.
Comments