cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235466 Primes whose base-9 representation also is the base-2 representation of a prime.

Original entry on oeis.org

739, 811, 6571, 59779, 532261, 591301, 4783699, 4789621, 4842109, 4849399, 5314411, 5314501, 5373469, 5374279, 43047541, 43112341, 43113061, 47888821, 47889559, 47895301, 48361861, 48420271, 48420919, 387421219, 387486109, 388011061, 388011709, 392210029, 392262589, 392734981
Offset: 1

Views

Author

M. F. Hasler, Jan 11 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
When the smaller base is b=2 such that only digits 0 and 1 are allowed, these are primes that are the sum of distinct powers of the larger base, here c=9, thus a subsequence of A077723.

Examples

			739 = 1011_9 and 1011_2 = 11 are both prime, so 739 is a term.
		

Crossrefs

Cf. A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    fQ[n_, j_, k_] := Block[{id = IntegerDigits[n, j]}, Max[id] < k && PrimeQ[ FromDigits[ id, k]]]; lst = {}; p = 2; While[p < 4*10^9, If[ fQ[p, 9, 2], AppendTo[lst, p]; Print[p]]; p = NextPrime@ p] (* Robert G. Wilson v, Oct 09 2014 *)
    pr9Q[n_]:=Module[{idn9=IntegerDigits[n,9]},Max[idn9]<2&&PrimeQ[ FromDigits[ idn9,2]]]; Select[Prime[Range[21*10^6]],pr9Q] (* Harvey P. Dale, Aug 25 2015 *)
  • PARI
    is(p,b=2,c=9)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,1e3,is(p,9,2)&&print1(vector(#d=digits(p,2),i,9^(#d-i))*d~,",")) \\ To produce the terms, this is much more efficient than to select them using straightforwardly is(.)=is(.,2,9)