A235466 Primes whose base-9 representation also is the base-2 representation of a prime.
739, 811, 6571, 59779, 532261, 591301, 4783699, 4789621, 4842109, 4849399, 5314411, 5314501, 5373469, 5374279, 43047541, 43112341, 43113061, 47888821, 47889559, 47895301, 48361861, 48420271, 48420919, 387421219, 387486109, 388011061, 388011709, 392210029, 392262589, 392734981
Offset: 1
Examples
739 = 1011_9 and 1011_2 = 11 are both prime, so 739 is a term.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1400
- M. F. Hasler, Primes whose base c expansion is also the base b expansion of a prime
Crossrefs
Programs
-
Mathematica
fQ[n_, j_, k_] := Block[{id = IntegerDigits[n, j]}, Max[id] < k && PrimeQ[ FromDigits[ id, k]]]; lst = {}; p = 2; While[p < 4*10^9, If[ fQ[p, 9, 2], AppendTo[lst, p]; Print[p]]; p = NextPrime@ p] (* Robert G. Wilson v, Oct 09 2014 *) pr9Q[n_]:=Module[{idn9=IntegerDigits[n,9]},Max[idn9]<2&&PrimeQ[ FromDigits[ idn9,2]]]; Select[Prime[Range[21*10^6]],pr9Q] (* Harvey P. Dale, Aug 25 2015 *)
-
PARI
is(p,b=2,c=9)=vecmax(d=digits(p,c))
-
PARI
forprime(p=1,1e3,is(p,9,2)&&print1(vector(#d=digits(p,2),i,9^(#d-i))*d~,",")) \\ To produce the terms, this is much more efficient than to select them using straightforwardly is(.)=is(.,2,9)
Comments