A235467 Primes whose base-4 representation also is the base-3 representation of a prime.
2, 89, 137, 149, 281, 293, 353, 389, 409, 421, 593, 613, 661, 1097, 1109, 1289, 1301, 1321, 1381, 1409, 1601, 1609, 1669, 2069, 2129, 2309, 2377, 2389, 2729, 4133, 4229, 4373, 4441, 4513, 4673, 5153
Offset: 1
Examples
E.g., 89 = 1121_4 and 1121_3 = 43 both are prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- M. F. Hasler, Primes whose base c expansion is also the base b expansion of a prime
Crossrefs
Programs
-
Mathematica
b4b3Q[n_]:=Module[{b4=IntegerDigits[n,4]},Max[b4]<3&&PrimeQ[ FromDigits[ b4,3]]]; Select[Prime[Range[700]],b4b3Q] (* Harvey P. Dale, Dec 14 2021 *)
-
PARI
is(p,b=3,c=4)=vecmax(d=digits(p,c))
-
PARI
forprime(p=1,1e3,is(p,4,3)&&print1(vector(#d=digits(p,3),i,4^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,3,4)
Comments