A235471 Primes whose base-8 representation also is the base-3 representation of a prime.
2, 17, 73, 521, 577, 593, 1097, 1153, 4177, 8713, 33353, 33857, 37889, 41617, 65537, 65609, 69697, 70289, 70793, 74897, 262153, 262657, 266369, 331777, 331921, 336529, 336977, 529489, 533129, 533633, 590921, 594953, 598537, 2098241, 2101249, 2102417, 2134529
Offset: 1
Examples
E.g., 17 = 21_8 and 21_3 = 7 are both prime.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- M. F. Hasler, Primes whose base c expansion is also the base b expansion of a prime
Crossrefs
Programs
-
Mathematica
b8b3pQ[n_]:=Module[{id8=IntegerDigits[n,8]},Max[id8]<3&&PrimeQ[ FromDigits[ id8,3]]]; Select[Prime[Range[160000]],b8b3pQ] (* Harvey P. Dale, Mar 16 2019 *)
-
PARI
is(p,b=3,c=8)=vecmax(d=digits(p,c))
-
PARI
forprime(p=1,1e3,is(p,8,3)&&print1(vector(#d=digits(p,3),i,8^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,3,8)
Comments