A235491 Self-inverse permutation of natural numbers: complementary pair ludic/nonludic numbers (A003309/A192607) entangled with the same pair in the opposite order, nonludic/ludic. See Formula.
0, 1, 4, 9, 2, 16, 7, 6, 25, 3, 61, 26, 17, 14, 13, 115, 5, 12, 359, 119, 67, 47, 43, 36, 791, 8, 11, 41, 3017, 81, 811, 407, 247, 227, 179, 7525, 23, 38, 37, 221, 34015, 27, 503, 22, 7765, 3509, 1943, 21, 1777, 1333, 93625, 97, 193, 146, 181, 1717, 486721, 121, 4493, 91, 96839, 10, 40217, 20813, 89
Offset: 0
Keywords
Examples
For n=2, with 2 being the second ludic number (= A003309(4)), the value is computed as nonludic(a(2-1)) = nonludic(a(1)) = 4, the first nonludic number, thus a(2) = 4. For n=5, with 5 being the fourth ludic number (= A003309(4)), the value is computed as nonludic(a(4-1)) = nonludic(a(3)) = nonludic(9) = 16, thus a(5) = 16. For n=6, with 6 being the second nonludic number (= A192607(2)), the value is computed as ludic(a(2)+1) = ludic(4+1) = ludic(5) = 7, thus a(6) = 7.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..74 (The terms after a(32) were computed with the help of 100000 term b-file uploaded by Donovan Johnson for A003309.)
- Index entries for sequences that are permutations of the natural numbers
Comments