cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235492 Median of maximal "prime gaps" in Cramer's model with n urns.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Alexei Kourbatov, Jan 11 2014

Keywords

Comments

In Cramer's probabilistic model of primes with n urns (Cramer, 1936, A235402), there exists a distribution of maximal "prime gaps". We can represent this distribution as a histogram. This sequence is the distribution's median, i.e. the (unique) x-coordinate of the histogram's bar with the following properties:
- the sum of this bar plus all bars to the left is 1/2 or more, AND
- the sum of this bar plus all bars to the right is 1/2 or more.
See A235402 for further comments.

Examples

			For n=3, the histogram bar at x=1 has the height 0.91>1/2. Therefore, x=1 is the histogram's median, so a(3)=1. See A235402 for more details.
		

Crossrefs

Cf. A235402 (mode of maximal "prime gaps" in Cramer's model).

Formula

a(n) = n log(li n)/(li n) + O(n/li n), where li n is the logarithmic integral of n.