cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235596 Second column of triangle in A235595.

Original entry on oeis.org

0, 0, 2, 9, 40, 195, 1056, 6321, 41392, 293607, 2237920, 18210093, 157329096, 1436630091, 13810863808, 139305550065, 1469959371232, 16184586405327, 185504221191744, 2208841954063317, 27272621155678840, 348586218389733555, 4605223387997411872, 62797451641106266329, 882730631284319415504
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2014

Keywords

Examples

			G.f. = 2*x^3 + 9*x^4 + 40*x^5 + 195*x^6 + 1056*x^7 + 6321*x^8 + 41392*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; a[n_] := (a[n, 2] - a[n, 1])/n; Array[a, 25] (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
    Table[Sum[BellY[n - 1, k, Range[n - 1]], {k, 0, n - 2}], {n, 1, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • Python
    from sympy import binomial
    from sympy.core.cache import cacheit
    @cacheit
    def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)])
    def a(n): return b(n - 1, 1) - b(n - 1, 0)
    print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 26 2017

Formula

a(n) = A000248(n-1) - 1. - Alois P. Heinz, Jun 21 2019