A235596 Second column of triangle in A235595.
0, 0, 2, 9, 40, 195, 1056, 6321, 41392, 293607, 2237920, 18210093, 157329096, 1436630091, 13810863808, 139305550065, 1469959371232, 16184586405327, 185504221191744, 2208841954063317, 27272621155678840, 348586218389733555, 4605223387997411872, 62797451641106266329, 882730631284319415504
Offset: 1
Keywords
Examples
G.f. = 2*x^3 + 9*x^4 + 40*x^5 + 195*x^6 + 1056*x^7 + 6321*x^8 + 41392*x^9 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; a[n_] := (a[n, 2] - a[n, 1])/n; Array[a, 25] (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *) Table[Sum[BellY[n - 1, k, Range[n - 1]], {k, 0, n - 2}], {n, 1, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
Python
from sympy import binomial from sympy.core.cache import cacheit @cacheit def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)]) def a(n): return b(n - 1, 1) - b(n - 1, 0) print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 26 2017
Formula
a(n) = A000248(n-1) - 1. - Alois P. Heinz, Jun 21 2019