A235608 Triangle read by rows: a non-Riordan array serving as a counterexample to a conjecture about Riordan arrays.
1, 2, 1, 10, 5, 1, 62, 31, 7, 1, 430, 215, 51, 10, 1, 3194, 1597, 389, 87, 12, 1, 24850, 12425, 3077, 740, 117, 15, 1, 199910, 99955, 25035, 6305, 1076, 168, 17, 1, 1649350, 824675, 208255, 54150, 9705, 1700, 208, 20, 1, 13879538, 6939769, 1763473, 469399, 87048
Offset: 0
Examples
Triangle begins: 1; 2, 1; 10, 5, 1; 62, 31, 7, 1; 430, 215, 51, 10, 1; 3194, 1597, 389, 87, 12, 1; 24850, 12425, 3077, 740, 117, 15, 1; 199910, 99955, 25035, 6305, 1076, 168, 17, 1; 1649350, 824675, 208255, 54150, 9705, 1700, 208, 20, 1; 13879538, 6939769, 1763473, 469399, 87048, 16449, 2248, 274, 22, 1; ... - Extended by _Philippe Deléham_, Jan 31 2014
Links
- Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583 [math.CO], 2013. See Example 3.
Programs
-
Mathematica
f[x_] := (1+x-Sqrt[1-10*x+x^2])/(6*x); g[x_] := (1-x-Sqrt[1-10*x+x^2])/(4*x); t[n_, k_] := SeriesCoefficient[f[x]^Floor[(k+2)/2]*g[x]^Floor[(k+1)/2], {x, 0, n}]; Table[t[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 31 2014, after Philippe Deléham *)
Formula
G.f. for the column k (with leading zero omitted): f(x)^(floor((k+2)/2))*g(x)^(floor((k+1)/2)) with f(x) = (1+x-sqrt(1-10*x+x^2))/(6*x) and g(x) = (1-x-sqrt(1-10*x+x^2))/(4*x). - Philippe Deléham, Jan 31 2014
Extensions
More terms from Philippe Deléham, Jan 31 2014
Comments