cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235608 Triangle read by rows: a non-Riordan array serving as a counterexample to a conjecture about Riordan arrays.

Original entry on oeis.org

1, 2, 1, 10, 5, 1, 62, 31, 7, 1, 430, 215, 51, 10, 1, 3194, 1597, 389, 87, 12, 1, 24850, 12425, 3077, 740, 117, 15, 1, 199910, 99955, 25035, 6305, 1076, 168, 17, 1, 1649350, 824675, 208255, 54150, 9705, 1700, 208, 20, 1, 13879538, 6939769, 1763473, 469399, 87048
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2014

Keywords

Comments

See Barry (2013), Example 3, for precise definition.
T(n,1) = T(n,0)/2 for n > 0. - Philippe Deléham, Jan 31 2014

Examples

			Triangle begins:
         1;
         2,       1;
        10,       5,       1;
        62,      31,       7,      1;
       430,     215,      51,     10,     1;
      3194,    1597,     389,     87,    12,    1;
     24850,   12425,    3077,    740,   117,    15,    1;
    199910,   99955,   25035,   6305,  1076,   168,   17,   1;
   1649350,  824675,  208255,  54150,  9705,  1700,  208,  20,  1;
  13879538, 6939769, 1763473, 469399, 87048, 16449, 2248, 274, 22, 1;
... - Extended by _Philippe Deléham_, Jan 31 2014
		

Crossrefs

The leading column is A107841.

Programs

  • Mathematica
    f[x_] := (1+x-Sqrt[1-10*x+x^2])/(6*x); g[x_] := (1-x-Sqrt[1-10*x+x^2])/(4*x); t[n_, k_] := SeriesCoefficient[f[x]^Floor[(k+2)/2]*g[x]^Floor[(k+1)/2], {x, 0, n}]; Table[t[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 31 2014, after Philippe Deléham *)

Formula

G.f. for the column k (with leading zero omitted): f(x)^(floor((k+2)/2))*g(x)^(floor((k+1)/2)) with f(x) = (1+x-sqrt(1-10*x+x^2))/(6*x) and g(x) = (1-x-sqrt(1-10*x+x^2))/(4*x). - Philippe Deléham, Jan 31 2014

Extensions

More terms from Philippe Deléham, Jan 31 2014