A235643 Total number of sides of a tetraflake-like fractal after n iterations, a(1) = 16 (see comments).
16, 68, 296, 1300, 5728, 25268, 111512, 492196, 2172592, 9590180, 42332936, 186866356, 824867584, 3641141012, 16072772984, 70948650820, 313182494032, 1382454408452, 6102448992488, 26937513095764, 118907935627168, 524885022092660, 2316954583165784
Offset: 1
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
- Eric Weisstein's World of Mathematics, Box Fractal
- Wikipedia, n-flake
- Wikipedia, Vicsek Fractal
- Index entries for linear recurrences with constant coefficients, signature (6, -7).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{6,-7},{16,68},30] (* Harvey P. Dale, Jun 14 2014 *)
Formula
Conjecture from Colin Barker, Apr 21 2014: (Start)
a(n) = sqrt(2)*((3-sqrt(2))^n*(-1+sqrt(2))+(1+sqrt(2))*(3+sqrt(2))^n).
a(n) = 6*a(n-1)-7*a(n-2).
G.f.: 4*x*(-7*x+4) / (7*x^2-6*x+1). (End)
Extensions
More terms from Harvey P. Dale, Jun 14 2014
Comments