A235682 Number of ways to write n = k + m with k > 0 and m > 2 such that p = phi(k) + phi(m)/2 + 1, prime(p) - p + 1 and p*(p+1) - prime(p) are all prime, where phi(.) is Euler's totient function.
0, 0, 0, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 2, 2, 3, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 3, 0, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 6, 3, 6, 0, 6, 4, 5, 3, 1, 3, 4, 2, 3, 4, 1, 8, 6, 4, 8, 8
Offset: 1
Keywords
Examples
a(10) = 1 since 10 = 1 + 9 with phi(1) + phi(9)/2 + 1 = 5, prime(5) - 5 + 1 = 7 and 5*6 - prime(5) = 19 all prime. a(95) = 1 since 95 = 62 + 33 with phi(62) + phi(33)/2 + 1 = 41, prime(41) - 41 + 1 = 139 and 41*42 - prime(41) = 1543 all prime. a(421) = 1 since 421 = 289 + 132 with phi(289) + phi(132)/2 + 1 = 293, prime(293) - 293 + 1 = 1621 and 293*294 - prime(293) = 84229 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
PQ[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]-n+1]&&PrimeQ[n(n+1)-Prime[n]] f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2+1 a[n_]:=Sum[If[PQ[f[n,k]],1,0],{k,1,n-3}] Table[a[n],{n,1,100}]
Comments