cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A235728 a(n) = |{0 < k < n - 2: 2*m + 1, m*(m+1) - prime(m) and m*(m+1) + prime(m) are all prime with m = phi(k) + phi(n-k)/2}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 2, 4, 4, 4, 4, 4, 5, 3, 6, 4, 7, 4, 3, 6, 5, 6, 4, 7, 4, 7, 3, 5, 5, 5, 6, 6, 6, 3, 6, 3, 4, 2, 2, 4, 3, 4, 5, 4, 3, 6, 4, 2, 4, 2, 4, 3, 3, 6, 4, 2, 6, 8, 6, 10, 4, 6, 7, 4, 6, 6, 8, 6, 6, 2, 9, 5, 9, 10, 12, 4, 10, 6, 10, 6, 9, 5, 11, 10, 7, 10, 10, 6, 9, 11, 7, 8, 8, 13, 6, 5, 5, 6, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 15 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 5, and a(n) = 1 only for n = 191.
(ii) If n > 8 is not equal to 32, then there is a positive integer k < n - 2 such that 2*m + 1, m*(m+1) - prime(m) and m*(m+1) + prime(m) are all prime, where m = sigma(k) + phi(n-k)/2, and sigma(k) is the sum of all positive divisors of k.
(iii) If n > 444, then there is a positive integer k < n such that 2*m + 1, m^2 - prime(m) and m^2 + prime(m) are all prime, where m = sigma(k) + phi(n-k).
Clearly, part (i) of the conjecture implies that there are infinitely many odd primes p = 2*m + 1 with m*(m+1) - prime(m) = (p^2-1)/4 - prime((p-1)/2) and m*(m+1) + prime(m) = (p^2-1)/4 + prime((p-1)/2) both prime.

Examples

			a(6) = 2 since phi(1) + phi(5)/2 = phi(3) + phi(3)/2 = 3 with 2*3 + 1 = 7, 3*4 - prime(3) = 7 and 3*4 + prime(3) = 17 all prime.
a(191) = 1 since phi(153) + phi(38)/2 = 105 with 2*105 + 1 = 211, 105*106 - prime(105) = 11130 - 571 = 10559 and 105*106 + prime(105) = 11130 + 571 = 11701 all prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_]:=PrimeQ[2n+1]&&PrimeQ[n(n+1)-Prime[n]]&&PrimeQ[n(n+1)+Prime[n]]
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2
    a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]

A235806 Odd primes p with (p^2 - 1)/4 - prime((p - 1)/2) and (p^2 - 1)/4 - prime((p + 1)/2) both prime.

Original entry on oeis.org

7, 11, 19, 29, 41, 43, 53, 59, 89, 109, 139, 179, 181, 229, 379, 401, 421, 431, 541, 587, 659, 811, 991, 1069, 1103, 1117, 1231, 1259, 1459, 1471, 1619, 1709, 1831, 1951, 2179, 2791, 2797, 2833, 2851, 3001, 3391, 3571, 3617, 3631, 3637, 3671, 3793, 3863, 3929, 3967
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 16 2014

Keywords

Comments

By the conjecture in A235805, this sequence should have infinitely many terms.

Examples

			a(1) = 7 since neither (3^2-1)/4 - prime((3-1)/2) = 0 nor (5^2-1)/4 - prime((5+1)/2) = 1 is prime, but (7^2-1)/4 - prime((7-1)/2) = 12 - 5 = 7 and (7^2-1)/4 - prime((7+1)/2) = 12 - 7 = 5 are both prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_]:=PrimeQ[n(n+1)-Prime[n]]&&PrimeQ[n(n+1)-Prime[n+1]]
    n=0;Do[If[q[(Prime[k]-1)/2],n=n+1;Print[n," ",Prime[k]]],{k,2,1000}]
    Select[Prime[Range[2,600]],AllTrue[(#^2-1)/4-{Prime[(#-1)/2],Prime[ (#+1)/2]},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 05 2020 *)

A235914 Odd primes p = 2*m + 1 with m*(m-1) - prime(m) and m*(m+1) - prime(m) both prime.

Original entry on oeis.org

13, 17, 23, 29, 31, 43, 73, 89, 181, 229, 313, 367, 379, 557, 631, 683, 1021, 1069, 1093, 1151, 1303, 1459, 1471, 1663, 1733, 1831, 1871, 2411, 2473, 2791, 2843, 2887, 3673, 3691, 3793, 3797, 3863, 4001, 4139, 4261, 5261, 5431, 6091, 6301, 6661, 6737, 6883, 7489, 7523, 7873
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 16 2014

Keywords

Comments

By the conjecture in A235912, this sequence should have infinitely many terms.

Examples

			a(1) = 13 since none of 1*2 - prime(1) = 0, 1*2 - prime(2) = -1, 2*3 - prime(3) = 1 and 2*4 + 1 = 9 = 4*5 - prime(5) is prime, but 2*6 + 1 = 13, 5*6 - prime(6) = 30 - 13 = 17 and 6*7 - prime(6) = 42 - 13 = 29 are all prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>0&&PrimeQ[n]
    q[n_]:=PQ[n(n-1)-Prime[n]]&&PQ[n(n+1)-Prime[n]]
    n=0;Do[If[q[(Prime[k]-1)/2],n=n+1;Print[n," ",Prime[k]]],{k,2,1000}]

A235920 Primes p with prime(p) - p + 1 and (p^2 - 1)/4 - prime(p) both prime.

Original entry on oeis.org

17, 31, 41, 43, 61, 71, 83, 103, 109, 173, 181, 211, 271, 349, 353, 541, 661, 673, 743, 811, 911, 953, 971, 1171, 1429, 1471, 1483, 1723, 1787, 2053, 2203, 2579, 2749, 3019, 3299, 3391, 3433, 3463, 3727, 3917, 4003, 4021, 4049, 4243, 4447, 4567, 4657, 4729, 4801, 4993
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 17 2014

Keywords

Comments

By the conjecture in A235919, this sequence should have infinitely many terms.

Examples

			a(1) = 17 with prime(17) - 17 + 1 =   59 - 16 = 43 and (17^2 - 1)/4 - prime(17) = 72 - 59 = 13 both prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>0&&PrimeQ[n]
    p[n_]:=PrimeQ[Prime[n]-n+1]&&PQ[(n^2-1)/4-Prime[n]]
    n=0;Do[If[p[Prime[k]],n=n+1;Print[n," ",Prime[k]]],{k,1,1000}]
Showing 1-4 of 4 results.