cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A235727 Odd primes p with (p^2 - 1)/4 - prime((p - 1)/2) and (p^2 - 1)/4 + prime((p - 1)/2) both prime.

Original entry on oeis.org

7, 11, 19, 23, 41, 73, 83, 109, 197, 211, 229, 271, 379, 461, 541, 631, 641, 659, 859, 991, 1031, 1049, 1051, 1093, 1103, 1217, 1429, 1451, 1879, 2063, 2131, 2287, 2341, 2411, 3019, 3257, 3461, 3659, 3673, 3691, 3709, 3917, 3967, 4409, 4463, 4519, 5279, 5303, 5471, 5477
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 15 2014

Keywords

Comments

By the conjecture in A235728, this sequence should have infinitely many terms.

Examples

			a(1) = 7 since neither (3^2-1)/4 - prime((3-1)/2) = 1 nor (5^2-1)/4 + prime((5-1)/2) = 9 is prime, but (7^2-1)/4 - prime((7-1)/2) = 12 - 5 = 7 and (7^2-1)/4 + prime((7-1)/2) = 12 + 5 = 17 are both prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_]:=q[n]=PrimeQ[n(n+1)-Prime[n]]&&PrimeQ[n(n+1)+Prime[n]]
    n=0;Do[If[q[(Prime[k]-1)/2],n=n+1;Print[n," ",Prime[k]]],{k,2,1000}]

A235912 a(n) = |{0 < k < n - 2: 2*m + 1, m*(m-1) - prime(m) and m*(m+1) - prime(m) are all prime with m = phi(k) + phi(n-k)/2}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 2, 4, 2, 6, 5, 6, 7, 4, 8, 7, 8, 8, 11, 7, 12, 9, 9, 12, 5, 14, 10, 9, 9, 9, 9, 7, 8, 11, 9, 8, 7, 14, 8, 6, 9, 5, 5, 9, 11, 3, 9, 6, 13, 8, 8, 6, 7, 6, 5, 4, 3, 1, 5, 5, 5, 6, 5, 7, 7, 4, 7, 11, 8, 3, 5, 3, 10, 4, 4, 3, 9, 2, 4, 4, 5, 8, 12, 13, 4, 9, 5, 11, 5, 12, 7, 4, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 16 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 11.
This implies that there are infinitely many odd primes p = 2*m + 1 with q = m*(m-1) - prime(m) and r = m*(m+1) - prime(m) both prime. Note that r - q = 2*m.

Examples

			 a(10) = 1 since phi(5) + phi(5)/2 = 6 with 2*6 + 1 = 13, 5*6 - prime(6) = 30 - 13 = 17 and 6*7 - prime(6) = 42 - 13 = 29 all prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>0&&PrimeQ[n]
    p[n_]:=PrimeQ[2n+1]&&PQ[n(n-1)-Prime[n]]&&PQ[n(n+1)-Prime[n]]
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]

A235805 a(n) = |{0 < k < n - 2: 2*m + 1, m*(m+1) - prime(m) and m*(m+1) - prime(m+1) are all prime with m = phi(k) + phi(n-k)/2}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 2, 4, 4, 4, 4, 4, 4, 2, 6, 3, 7, 4, 2, 7, 3, 5, 4, 4, 6, 6, 6, 4, 4, 7, 8, 9, 6, 6, 11, 8, 10, 6, 6, 12, 8, 13, 6, 12, 8, 13, 10, 7, 14, 10, 11, 11, 11, 16, 14, 13, 9, 15, 11, 23, 14, 12, 11, 12, 10, 14, 8, 15, 9, 14, 13, 11, 12, 9, 19, 9, 14, 11, 16, 8, 14, 5, 13, 8, 13, 9, 13, 10, 15, 10, 11, 12, 17, 8, 13, 10, 11, 7, 18
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 16 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 5.
This implies that there are infinitely many odd primes p = 2*m + 1 with m*(m+1) - prime(m) and m*(m+1)- prime(m+1) both prime.

Examples

			a(8) = 2 since phi(4) + phi(4)/2 = 3 with 2*3 + 1 = 7, 3*4 - prime(3) = 7 and 3*4 - prime(4) = 5 all prime, and phi(5) + phi(3)/2 = 5 with 2*5 + 1 = 11, 5*6 - prime(5) = 19 and 5*6 - prime(6) = 17 all prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_]:=PrimeQ[2n+1]&&PrimeQ[n(n+1)-Prime[n]]&&PrimeQ[n(n+1)-Prime[n+1]]
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2
    a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]
Showing 1-3 of 3 results.